Abstract:
One aspect includes a method of establishing, via a first access point, a distributed MIMO joint transmission opportunity with one or more second access points to one or more stations. The method comprises generating, via a processor, a first message for transmission to the stations and the second access points. The first message indicates a null data packet transmission and the stations configured to receive a stream during the joint transmission opportunity. The method also comprises transmitting the first message to the second access points and the stations. The method further comprises generating, via the processor, a reference phase signal for transmission to the second access points.
Abstract:
Methods, apparatuses, and computer readable media for resource allocation signaling in a high efficiency wireless local area network (WLAN) are disclosed. A transmitter may generate an indication that a first channel of a plurality of channels associated with a transmission frame has been punctured, the transmission frame including a WLAN signaling field. The transmitter may identify information associated with the WLAN signaling field corresponding to the punctured first channel. The transmitter may transmit the information associated with the WLAN signaling field in a second channel of the plurality of channels. The transmitter may transmit the indication that the first channel has been punctured in the second channel or in a second WLAN signaling field of the transmission frame.
Abstract:
Various aspects of the disclosure relate to communication using a data unit that includes a payload with synchronization information. In some aspects, a first apparatus may transmit a data unit that includes at least one synchronization symbol in the payload. A second apparatus that receives the data unit may thereby recover synchronization information from the data unit even if interference at the second apparatus prevents the second apparatus from recovering synchronization information in a preamble of the data unit. In some aspects, the second apparatus may determine, based on information in the at least one synchronization symbol, whether and/or when to conduct a spatial reuse transmission. In some aspects, the second apparatus may determine, based on information in the at least one synchronization symbol, an amount of time to defer transmission.
Abstract:
In one example, a system and method includes acquiring, by a wireless dockee (WD), an image, initiating a wireless connection between the wireless dockee (WD) and a wireless docking center (WDC) having one or more peripherals, determining attributes associated with the acquired image, wherein the attributes include feature descriptors, receiving, at the WD and from the WDC, information representative of matching items stored on one or more of the peripherals, wherein the matching items include images with attributes similar to the attributes associated with the acquired image, selecting, at the WD and as a function of the information representative of the matching items, one or more of the matching items, and receiving, from the one or more of the peripherals, the selected matching items.
Abstract:
Various aspects of the disclosure relate to communication using a data unit that includes at least one mid-amble. In some aspects, an apparatus may use mid-ambles for mobility scenarios (e.g., when the apparatus is moving outdoors). The disclosure relates in some aspects to signaling associated with the use of mid-ambles. In some aspects, an apparatus may signal whether it supports sending and/or receiving data with mid-ambles. In some aspects, an apparatus may signal whether a particular data unit includes at least one mid-amble. In some aspects, an apparatus may signal an indication of at least one mid-amble update interval. In some aspects, an apparatus may signal whether a mid-amble includes a short training field.
Abstract:
Methods, systems, and devices for wireless communication are described. An access point (AP) may use wireless local area network (WLAN) signaling fields in a multiple user transmission preamble to communicate with a number of stations greater than a threshold. For example, the AP may determine that the number of stations is greater than the threshold and generate a compression indicator and an indication of the number of stations to include in a first signaling field. The AP may then generate a spatial configuration indicator in a second signaling field based on the number of stations and transmit the first and second signaling fields in a preamble of the multiple user transmission. Upon receiving the preamble, a station may identify the compression indicator and number of stations, and the spatial configuration indicator in the first and second signaling fields, and decode the multiple user transmission using a determined spatial decoding scheme.
Abstract:
Various aspects of the present disclosure provide for detecting a condition indicating that a graphics processing unit (GPU) is in an unstable state while receiving GPU commands in a first wireless display mode, transmitting a GPU refresh request message and switching from the first wireless display mode to a second wireless display mode in response to detecting the condition, receiving data sufficient to reset the GPU from the unstable state to a stable state at a random access point (RAP) in a trace of the GPU commands, and switching from the second wireless display mode to the first wireless display mode after receiving the data. The GPU refresh request message may include information requesting the data sufficient to reset the GPU at an upcoming RAP in the trace of the GPU commands. Various other aspects are also provided throughout the present disclosure.
Abstract:
Source and sink devices are adapted to facilitate streaming of screen content data over a USB communication channel. According to one example, a source device can capture GPU-executable video data at an input of a GPU, and transmit a graphics domain data frame including the captured video data on a data plane of a USB communication channel. Further, a command message may be transmitted on a management plane of the USB communication channel. The sink device may receive the graphics domain data frame with the captured video data on the data plane, and may receive the command message on the management plane. The sink device may render and display the video data. Other aspects, embodiments, and features are also included.
Abstract:
Aspects of the present disclosure provide a method of wireless communication operable at a peer-to-peer (P2P) device, an apparatus, and a computer program product. A first P2P device determines a first interference margin report including a plurality of first interference margins. The first interference margins respectively correspond to a plurality of channels at a plurality of bandwidths. The first P2P device transmits the first interference margin report to a second P2P device. Prior to associating with the second P2P device to form a P2P group, the first P2P device selects at least one of a bandwidth, a channel, or a group owner of the P2P group based on the first interference margin report.
Abstract:
This disclosure describes methods and apparatuses for per-packet frequency and/or per-packet band switching to reduce channel access delay in wireless systems. This disclosure also introduces a transmitting and receiving architecture for per-packet frequency and/or per-packet band switching in single MAC (e.g. a single 802.11 standard amendment) systems and multi-MAC (e.g. multiple 802.11 standard amendment) systems.