Abstract:
A transmitter comprises a block generator (109) which divides a data symbol stream into data symbol blocks. A divide processor (111) divides each block into a first set of data symbols stored in a first set buffer (113) and a second set of data symbols stored in a second set buffer (115). A space time block encoder (117) codes the first set in accordance with a space time block code to generate a coded set of data symbols. A parallel processor (119) then creates a plurality of parallel data streams from the coded set and the second set. Each of the parallel data streams is allocated to one of a plurality of antennas (129-135). A plurality of parallel stream transmitters (121-127) transmits the parallel data streams in parallel in a communication channel from the plurality of transmit antennas (129-135).
Abstract:
In a cellular communications network comprising a plurality of transmitting sites wherein each transmitting site comprises at least one antenna, a method of serving a given data stream to a target mobile terminal, comprising: designating at least two of the plurality of transmitting sites as cooperating sites; assigning tones to each transmitting site from a sub-band associated with the cooperating sites; dividing the data stream into at least two sub-data streams, each of the sub-data streams for transmission over selected tones; and interlacing tones of the cooperating sites in accordance with a selected one of a time switching and a frequency switching transmit diversity technique.
Abstract:
Systems and methodologies are described that facilitate integrating a list-sphere decoding design in a multiple input-multiple output (MIMO wireless communication environment. According to various aspects, optimal rank selection and CQI computation for an optimal rank can be performed in conjunction with a non-linear receiver, such as a maximum life (ML) MMSE receiver, a non-linear receiver with a list-sphere decoder, and the like. Optimal rank selection can be performed using a maximum rank selection protocol, a channel capacity-based protocol, or any other suitable protocol that facilitates rank selection, and CQI information can be generated based in part on effective SNRs determined with regard to a selected optimal rank.
Abstract:
A spatial modulation method and transmitting and receiving apparatuses using the spatial modulation method in a MIMO system are provided. The spatial modulation method uses an index of an activated antenna and a signal modulation constellation as an information source. The spatial modulation method is applied to the transmitting apparatus. The receiving apparatus uses a spatial modulation detection method in which a channel path gain is repeatedly multiplied to detect the spatially modulated signal efficiently.
Abstract:
A transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased. An encoding part subjects transport data to a block encoding process to form block encoded data. A modulating part modulates the block encoded data to form data symbols; and an arranging (interleaving) part arranges (interleaves) the block encoded data in such a manner that the intra-block encoded data of the encoded blocks, which include their respective single different data symbol, get together, and then supplies the arranged (interleaved) block encoded data to the modulating part. In this way, there can be provided a transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased.
Abstract:
A method of controlling signal transmission in a Multiple Input Multiple Output (MIMO) communication system including selecting a modulation and code set (MCS) for each of M data streams transmitted via M transmitting antennas in a transmitting side of the MIMO system, and selectively selecting M−1 or fewer transmitting antennas from the M transmitting antennas for transmitting the data streams based on channel quality information indicative of a transmission performance of the selected MCS corresponding to each of the M transmitting antennas. In another example, the present invention provides a novel method of controlling signal transmission in a MIMO communication system including selecting M weight vectors for streams transmitted by each of M transmitting antennas in a transmitting side of the MIMO system, and selectively selecting M−1 or fewer streams and weight vectors from the M weight vectors for transmitting data streams based on channel quality information indicative of transmission performance of the selected weight vectors corresponding to each of the M vector spaces.
Abstract:
A method for uplink transmission in an OFDMA system is provided. The subcarrier transmission method includes arranging 4 pilot REs at different positions of a frequency axis in a basic unit when the basic unit includes 4 subcarriers on the frequency axis and 6 OFDM(A) symbols in a time axis, arranging data REs at remaining positions of the basic unit, and transmitting the basic unit to a receiving end.
Abstract:
A method of serving a given data stream to a target mobile terminal, in a cellular communications network that includes a plurality of transmitting sites wherein each transmitting site including at least one antenna, is provided. The method includes designating at least two of the plurality of transmitting sites as cooperating sites; assigning tones to each transmitting site from a sub-band associated with the cooperating sites; dividing the data stream into at least two sub-data streams, each of the sub-data streams for transmission over selected tones; and interlacing tones of the cooperating sites in accordance with a selected one of a time switching and a frequency switching transmit diversity technique. Other techniques for multi-site MIMO cooperation are also provided.
Abstract:
A method for performing Forward Error Correction (FEC) in a Turbo-Bell Labs Layered Space-Time (BLAST) Multiple-Input Multiple-Output (MIMO) communication system. The FEC method includes performing soft decision on a frame received via a plurality of antennas; performing iterative decoding on the soft decision result value a predetermined number of times, and outputting Log Likelihood Ratio (LLR) values for information bits and first parity bits constituting the frame; generating second parity bits by coding information bits calculated from the LLR values, and comparing the first parity bits calculated from the LLR values with the coded second parity bits; and if the first parity bits are identical to the second parity bits, outputting the information bits, determining that there is no error, and if the first parity bits are not identical to the second parity bits, feeding back the LLR values as a-priori information of the soft decision, and returning to the performing of soft decision.
Abstract:
A method of controlling signal transmission in a Multiple Input Multiple Output (MIMO) communication system including selecting a modulation and code set (MCS) for each of M data streams transmitted via M transmitting antennas in a transmitting side of the MIMO system, and selectively selecting M−1 or fewer transmitting antennas from the M transmitting antennas for transmitting the data streams based on channel quality information indicative of a transmission performance of the selected MCS corresponding to each of the M transmitting antennas. In another example, the present invention provides a novel method of controlling signal transmission in a MIMO communication system including selecting M weight vectors for streams transmitted by each of M transmitting antennas in a transmitting side of the MIMO system, and selectively selecting M−1 or fewer streams and weight vectors from the M weight vectors for transmitting data streams based on channel quality information indicative of transmission performance of the selected weight vectors corresponding to each of the M vector spaces.