Abstract:
A method for detecting a double-parked vehicle includes identifying a parking region in video data received from an image capture device monitoring the parking region. The method includes defining an enforcement region at least partially surrounding the parking region. The method includes detecting a stationary vehicle in the enforcement region. The method includes determining the occurrence of an event relative to the stationary vehicle. In response to the determined occurrence of the event, the method includes classifying the stationary vehicle as being one of double parked and not double parked.
Abstract:
What is disclosed is a system and method which reconstructs an N-pixel image of a scene such that Q pixel locations associated with identified regions of interest in a scene have a higher image quality when rendered relative to other pixels in the image. Acquisition and adaptive-quality compression are performed simultaneously by semi-synchronously or asynchronously temporally modulating an ordered set of sampling functions used to spatially modulate a pattern of light. The teachings hereof improve compression efficiency of a compressed sensing framework while improving encoding efficiency with respect to traditional compressed sensing techniques.
Abstract:
This disclosure provides methods and systems for form a trajectory of a moving vehicle captured with an image capturing device. According to one exemplary embodiment, a method forms a trajectory of a moving vehicle and determines if the vehicle is moving in one of a permitted manner and an unpermitted manner relative to the appropriate motor vehicle lane restriction laws and/or regulations.
Abstract:
What is disclosed a system and method for estimating a position (or pose) of a camera relative to a surface upon which an object rests in an image captured by that camera such that a volume can be estimated for that object. In one embodiment, a matrix K is determined from parameters intrinsic to a camera used to capture image. An amount of a camera translation T is determined with respect to a set of real-world coordinates in (X,Y,Z). An amount of a camera rotation matrix R is determined from camera angles measured with respect to the real-world coordinates. A distance Zc of the camera at location (i,j) can then be estimated. A volume of the object in an image of that object can be estimated from the camera pose.
Abstract:
A system and method for automatic classification and detection of a payment gesture are disclosed. The method includes obtaining a video stream from a camera placed above at least one region of interest, the region of interest classifying the payment gesture. A background image is generated from the obtained video stream. Motion is estimated in at least two consecutive frames from the video stream. A representation is created from the background image and the estimated motion occurring within the at least one region of interest. The payment gesture is detected based on the representation.