Abstract:
Methods and apparatus are disclosed for interference mitigation of an open-access node. The method includes determining, at the open-access node, whether uplink interference from a mobile entity is above a threshold. The method includes adjusting a transmission power to trigger a hand-in of the mobile entity in response to determining the uplink interference is above the threshold. The method includes handing-in the mobile entity from a first cell in response to adjusting the transmission power. The method includes redirecting the mobile entity to a second cell different from the first cell.
Abstract:
Aspects describe communications environments in which femtocell capability is provided to devices within the communications network. A non-femto enabled device and/or a femto enabled device can communicate with a femto enabled device in the same geographical area for femto-enabled peer-to-peer communication. Two non-femto enabled devices can be provided femto functionality through utilization of a femto enabled device, which operates as a hub between the two devices. Other aspects relate to enhanced position determination, adaptive coverage enhancement, local mobile networks, open access femtocells without a backhaul, and local broadcast of media though utilization of femto enabled devices.
Abstract:
Techniques for supporting communication by base stations are disclosed. In an aspect of the present disclosure, for network-based alarming, a base station may notify a designated user equipment (UE) whenever certain trigger events occurred at the base station. The base station may send notification messages for detected trigger events to the UE for timely intervention. In another aspect of the present disclosure, for network-based reconfiguration, a base station for a small cell may be reconfigured by a network server based on performance metrics for base stations in a wireless system. The reconfiguration may improve the performance of the base station and possibly other base stations in the wireless system.
Abstract:
An apparatus, configured to communicate with other apparatuses in a wireless network and operating in a frequency-division duplexing mode, can be caused to refrain from transmitting during a number of subframes of a frame of a downlink frequency band prior to a detection of a radar transmission, can be caused to send a first signal, related to monitoring for the radar transmission, to a second apparatus, and can be caused to change the number of the subframes of the frame of the downlink frequency band in response to an event that can be an increase or a decrease in a load of the apparatus or the detection of the radar transmission. Optionally, placement of the subframes within the frame of the downlink frequency band can correspond to placement of subframes that are designated for an uplink communication within a frame configured in accordance with the Long-Term Evolution Time-Division Duplex standard.
Abstract:
Systems and methods for dynamically adjusting the transmission time interval (TTI) for a communications system are presented. The described aspects provide for dynamically adjusting the TTI in a communication session between a base station or nodeB and a wireless device or user equipment between a shorter TTI, which can provide increased data throughput and lower power consumption, and a longer TTI, which can provide more rugged communication link connections. By dynamically adjusting the TTI, the communications link can be optimized for the given communication channel conditions. Determinations, based on indicia related to the communications system conditions, can be employed in dynamic TTI adjustment. These determinations can be formed centrally at the Radio Network Controller (RNC), at the RNC supplemented with user equipment (UE) available information, or formed in a distributed manner between the RNC and UE across a communications system.
Abstract:
A UE or mobile entity in a wireless communication may assist network optimization by determining a location uncovered by a wireless network, generate a coverage hole detected message if one or more conditions associated with the uncovered location are satisfied, and determining a time to transmit the coverage hole detected message to a covered wireless network. The covered network may act on the message to add covered in a second network so that the second network covers the UE. In other aspects, a UE or mobile entity may detect cell congestion in a first cell and assist the network in offloading congestion from the congested cell. In other aspects, a UE or mobile entity may detect backhaul congestion on a first cell, and assist in offloading backhaul communication for the first cell via a second cell.
Abstract:
Methods and apparatus for communication comprise aspects that include performing a power management procedure for configuring a subset of network entities to receive one or more of downlink signal measurements and/or one or more uplink signal measurements. The methods and apparatus further comprise aspects that include storing the one or more one or more of downlink signal measurements and/or one or more uplink signal measurements associated with the subset of network entities at a database for managing transmit power at the subset of network entities. Moreover, the methods and apparatus comprise aspects that include adjusting a transmit power value of at least one of the subset of network entities from a first transmit power value to a second transmit power value based at least in part on the one or more of downlink signal measurements and/or one or more uplink signal measurements.
Abstract:
A system performs an over-the-air transmission from a source small cell to a destination small cell. A channel for the over-the-air transmission is selected based on information to be sent. The system determines an information attribute for an over-the-air transmission from the source small cell to the destination small cell. The system selects an over-the-air channel, from a set of channels, based on the information attribute. The source small cell sends the over-the-air transmission on the selected over-the-air channel to the destination small cell.
Abstract:
Interference that occurs during wireless communication may be managed through the use of fractional reuse and other techniques. In some aspects fractional reuse may relate to HARQ interlaces, portions of a timeslot, frequency spectrum, and spreading codes. Interference may be managed through the use of a transmit power profile and/or an attenuation profile. Interference also may be managed through the use of power management-related techniques.
Abstract:
Techniques for admitting user equipments (UEs) to wireless systems are disclosed. UEs may be assigned priorities for admission to a given wireless system. The UEs may then be admitted to the wireless system based on the priorities of the UEs for the wireless system. In one design, a UE may be identified for admission to a first wireless system among a plurality of wireless systems. Attributes (e.g., capabilities) of the UE for the plurality of wireless systems may be determined. An admission priority of the UE for the first wireless system may be determined based on the attributes of the UE for the plurality of wireless systems. Whether to admit the UE to the first wireless system may be determined based on the admission priority of the UE for the first wireless system and possibly the current resource usage of the first wireless system.