Abstract:
A tiltrotor aircraft includes a fuselage, a wing member extending from the fuselage, an engine disposed relative to the wing member, a rotor hub assembly mechanically coupled to the engine and a plurality of proprotor blade assemblies rotatably mounted to the rotor hub assembly and operable for beamwise folding relative thereto. The proprotor blade assemblies each including a spar and a sheath extending spanwise along a leading edge of the spar. The spar has a root section, a main section and a tip section. The spar has a generally oval cross section at radial stations along the main section of the spar with the root section of the spar forming an integral tang assembly operable for coupling the spar to the rotor hub assembly.
Abstract:
A device for absorbing kinetic energy for an aircraft structural element undergoing a dynamic impact. The device includes an outer enclosure made from a braided composite material configured to preserve its integrity after an impact, a foam core, contained in the outer enclosure and to at least partially fill the outer enclosure. The foam core is configured to at least partially absorb the kinetic energy generated by the impact. Reinforcing elements are integrated at least partially into the foam core to dissipate, combined with the form core, the kinetic energy generated by the impact. The reinforcing elements includes discontinuous threads inserted into the foam core by stitching, and each discontinuous thread includes an L- or T-shaped head, folded down outside the outer enclosure.
Abstract:
A propeller blade includes a foam core, an adhesive layer formed on the core and a structural layer that covers at least a portion of the adhesive layer and that surrounds at least a portion of the foam core.
Abstract:
A propeller blade, which can belong to a fan without covering by an external casing, includes two portions fitted into one another and of different materials, generally composite, to resist various stresses, heating coming from a rotor or impacts of solid bodies. An internal portion includes a blade core, a blade shank and possibly a foam lining, and a preform of an outside portion is assembled to it by surrounding it closely before being completely formed by receiving its resin, which is placed into polymerization. A method for producing the propeller blade guarantees good assembly of the portions without defects of form, damage or deformation of a fiber weave.
Abstract:
A method for making a propeller product is disclosed. The propeller is formed using polyurethane cores adhered to a laminate hub to form a core assembly. An encapsulating structural laminate skin is then formed on the core assembly using a resin-transfer-molding process to create a single-piece composite propeller.
Abstract:
A propeller blade includes a foam core, a structural layer formed of multiple layers that surrounds at least a portion of the foam core and at least one section of fibers formed separately from the structural layer located between two of the multiple layers.
Abstract:
Blades for rotorcraft are designed and/or implemented with rotor blades having a swept portion that occupies at least 20-40% of a length of the blade. Forward and aft sweeps are contemplated, with up to 20° or more of sweep. The swept portion preferably has a thickness ration of at least 10-20% at R80, and can have a tapered planform with a relatively outboard section having a smaller chord than a relatively inboard section. Contemplated design methods include optimizing or otherwise designing the rotor blade planform and lift distribution along the blade for efficiency in various flight conditions without taking into account the detrimental effects of high Mach numbers, and then using sweep angle, airfoil thickness and transonic airfoil shaping to maintain the lift distribution, low drag and low noise level at real Mach numbers at the various blade stations at the various flight conditions.
Abstract:
A lightweight wind turbine blade formed with a truss support structure assembly of composite truss joints including composite spar and cross members attached to and supporting in spaced relation a spine of lightweight rib panels. The rib panels are oriented in parallel spaced relation from one another and individually molded with perimeters defining individual areas of curvature for the finished blade assembly. The truss support structure is covered with a lightweight fiberglass or hardened fabric skin attached to and fitted on respective rib panel edges forming an airfoil structure.
Abstract:
A mixture composition of a cellulose ether made from raw cotton linters and at least one additive is used in a dry tile cement composition wherein the amount of the cellulose ether in the tile cement composition is significantly reduced. When this tile cement composition is mixed with water and applied to a substrate, the correction time, applicability, and sag resistance of the wet mortar are comparable or improved as compared to when using conventional similar cellulose ethers.