Abstract:
A method for producing low- or medium-voltage electrical switchgear including an electrical component, at least one electrical connector connected electrically to the component and an enclosure delimiting a volume in which the component is received, in which the connector includes a body which passes through the enclosure, the method including a step of fitting a seal in a peripheral groove formed in the wall of the body and a step of injecting a plastic material around the body of the connector and around the seal, wherein the injection step consists in injecting the plastic material at a pressure causing an elastic crushing of the seal in the groove.
Abstract:
A roll for rotating a movable contact of a rotary switch, and a method of mounting a switch are provided. The roll includes a first slot going along the diameter of the roll and open from the top of the roll for receiving the movable contact for contacting with a stationary contact of the rotary switch, and a second slot arranged perpendicular to the first slot for receiving teeth of an upper roll to be mounted together with the roll.
Abstract:
A contact slider unit is disclosed for a switching unit, in particular for a circuit breaker, having a contact slider and a contact piece. In an embodiment, the contact piece has a passage through which a tappet is guided.
Abstract:
The disclosed concept pertains to vacuum interrupters and arc-resistant shields. The arc-resistant shields are positioned in between a ceramic insulator. Each end of the arc-resistant shield is hermetically sealed to the ceramic insulator. The arc-resistant shield includes an outer surface and an inner surface. The inner surface includes an arc-resistant material. Disposed within the arc-resistant shield is a pair of electrode assemblies which are separable to establish arcing. In certain embodiments, the arc-resistant material is copper-chromium alloy.
Abstract:
The invention relates to a switch strip (10) for an apparatus for detecting an obstruction (210) in the movement range (221) of a closure element (220), in particular of an automotive vehicle (200). The switch strip (10) comprises an inner electrode (20), an outer electrode (30) approximately concentrically surrounding the inner electrode (20) at a distance (D), and a space (40) filled with air, which is arranged between the outer electrode (30) and the inner electrode (20) and which is dielectric. Furthermore, the switch strip (10) comprises a spacer (50) which is deformable in a direction transverse to the longitudinal direction. The spacer (50) spaces and insulates the two electrodes (20, 30) from one another. The outer electrode (30) is deformable by a force (F) applied from the outside. The deformation of the outer electrode (30) is able to at least in portions bring the inner electrode (20) and the outer electrode (30) into contact with each other. Such a switch strip (10) is also referred to as a tactile switch strip (10).
Abstract:
One or more sensors are disposed to sense user inputs in an active display area as well as user inputs in an extended area that is outside of the active display area. Data for user inputs, such as gestures, may include data from user inputs sensed in both the active display area and outside of the active display area. The user inputs can begin and/or end outside of the active display area.
Abstract:
A micromechanical device and a method for forming the device is disclosed, wherein the micromechanical device has a laterally movable mechanically active element that has a quiescent position in which it is in physical contact with a second structural element. The device is fabricating by disposing the mechanically active element on a first substrate and disposing the second structural element on a second substrate. After the two substrates are aligned and joined such that both the mechanically active element and the second structural element are in contact and affixed to one of the substrates, the other substrate is removed leaving all structural elements disposed on a single substrate.
Abstract:
The invention relates to a limit switch comprising: a body (1) produced along a main axis (X) and containing a switching device, a head (2) that is removable and orientable with respect to the body (1) so that it can adopt several distinct angular positions about the main axis (X), said head (2) comprising actuating means arranged to act on the switching device, fixing means for fixing the limit switch to a support (S), the fixing means being arranged on the head (2) of the limit switch, the head (2) having at least two separate bearing planes, said fixing means being arranged to fix the head so that it bears against the support via one or other of its two bearing planes.
Abstract:
Disclosed is a micro-electro-mechanical switch, including a substrate having a gate connection, a source connection, a drain connection and a switch structure, coupled to the substrate. The switch structure includes a beam member, an anchor and a hinge. The beam member having a length sufficient to overhang both the gate connection and the drain connection. The anchor coupling the switch structure to the substrate, the anchor having a width. The hinge coupling the beam member to the anchor at a respective position along the anchor's length, the hinge to flex in response to a charge differential established between the gate and the beam member. The switch structure having gaps between the substrate and the anchor in regions proximate to the hinges.
Abstract:
A method of assembling a switching rocker arm assembly having an inner arm, an outer arm and a latch. The method includes indenting an outer arm surface on the outer arm, the outer arm surface defining an arcuate aperture. An inner arm surface can be indented on the inner arm at an inner arm latch shelf. A latch can be positioned relative to the inner and outer arms.