摘要:
A zero power identical pair of oppositely-oriented meniscus lens elements mounted in the projection light path, serves as curved mask support while compensating for optical anomalies such as beam shift and beam deviations produced by other transparent supports for the curved mask. The zero-power meniscus lens pair, without affecting the transmission beam characteristics, lets the beam diffract as efficiently as does a regular planar mask, thus preserving the partial coherence effects and resolution concepts of projection lithography. This simple but novel optics device is not only expected to clear several barriers for curved mask projection lithography but also find place in other applications where collimated or converging light beams have to travel extra paths without significant aberration.
摘要:
In a lithographic proximity method for wiring an end or internal side surface of a substrate the required exposure of strips (76), defining the wiring pattern, is performed by means of a mask (70) comprising a diffraction structure (74) to deflect exposure radiation (b) to the side surface. An exposure beam, which is perpendicularly incident on the mask, is used so that enhanced tolerance for proximity gap width variations is obtained. The method allows manufacture of accurate and fine wiring.
摘要:
A device manufacturing method is disclosed that includes providing a substrate on a substrate table, the substrate having a target region comprising a plurality of generally planar surfaces, each surface having a different height relative to the substrate table, determining the relative heights of each generally planar surface, projecting a patterned beam of radiation onto the target region of the substrate such that the focal plane of the beam substantially coincides with the plane of one of the generally planar surfaces, moving the substrate table in a direction substantially parallel to the axis of the beam, and projecting the patterned beam of radiation onto the target region of the substrate such that the focal plane of the beam substantially coincides with the plane of another of the generally planar surfaces.
摘要:
Methods and apparatuses for configuring radiation used in microlithographic processing of workpieces are disclosed herein. One particular embodiment of such a method comprises directing a radiation beam along a radiation path from a reticle to an adjustment structure. The radiation beam has a wavefront with a first configuration in an image plane generally transverse to the radiation path. The method continues by changing at least one independently controllable parameter of the adjustment structure to change the wavefront of the radiation beam from the first configuration to a second configuration. After changing the shape of the wavefront from the first configuration to the second configuration, the method continues by impinging the radiation beam on the workpiece.
摘要:
There is disclosed a manufacturing method for exposure mask, which comprises acquiring a first information showing surface shape of surface of each of a plurality of mask substrates, and a second information showing the flatness of the surface of each of mask substrates before and after chucked on a mask stage of an exposure apparatus, forming a corresponding relation of each mask substrate, the first information and the second information, selecting the second information showing a desired flatness among the second information of the corresponding relation, and preparing another mask substrate having the same surface shape as the surface shape indicated by the first information in the corresponding relation with the selected second information, and forming a desired pattern on the above-mentioned another mask substrate.
摘要:
A position deviation system and method detects and corrects position deviations between the optical axis of an optical system, such as an exposure apparatus, and the center of a curved shaped object, such as a spherical shaped semiconductor. The system determines position deviations by illuminating the curved surface, passing light that is reflected off of the illuminated curved surface through a first lens having an optical axis and a first body. An image having a substantially central portion is formed on a surface using the reflected light. The position deviation is determined based on a position of the substantially central portion of the formed image relative to the optical axis.
摘要:
A zero power identical pair of oppositely-oriented meniscus lens elements mounted in the projection light path, serves as curved mask support while compensating for optical anomalies such as beam shift and beam deviations produced by other transparent supports for the curved mask. The zero-power meniscus lens pair, without affecting the transmission beam characteristics, lets the beam diffract as efficiently as does a regular planar mask, thus preserving the partial coherence effects and resolution concepts of projection lithography. This simple but novel optics device is not only expected to clear several barriers for curved mask projection lithography but also find place in other applications where collimated or converging light beams have to travel extra paths without significant aberration.
摘要:
Provided is a projection optical system for forming an image of a pattern of a first object (R) on a second object (W). The projection optical system is made of an optical material having a refractive index of not more than 1.6 and is substantially telecentric both on the first object side and on the second object side. The projection optical system satisfies the condition of (λ×L)/(NA×Y02)
摘要:
There is disclosed a manufacturing method for exposure mask, which comprises acquiring a first information showing surface shape of surface of each of a plurality of mask substrates, and a second information showing the flatness of the surface of each of mask substrates before and after chucked on a mask stage of an exposure apparatus, forming a corresponding relation of each mask substrate, the first information and the second information, selecting the second information showing a desired flatness among the second information of the corresponding relation, and preparing another mask substrate having the same surface shape as the surface shape indicated by the first information in the corresponding relation with the selected second information, and forming a desired pattern on the above-mentioned another mask substrate.
摘要:
In a lithographic proximity method for wiring an end or internal side surface of a substrate the required exposure of strips (76), defining the wiring pattern, is performed by means of a mask (70) comprising a diffraction structure (74) to deflect exposure radiation (b) to the side surface. An exposure beam, which is perpendicularly incident on the mask, is used so that enhanced tolerance for proximity gap width variations is obtained. The method allows manufacture of accurate and fine wiring.