Abstract:
A device for eliminating oil particles from the crankcase ventilation gas of an internal combustion engine. The device is located in the flow duct of the gas that runs from the crankcase to an induction tract of the engine. The device includes an oil separator in the form of an outlet for the gas with a deflection of the flow, causing the oil particles to be deposited on a baffle surface and thus to be eliminated from the crankcase ventilation gas flow. The device has an infeed cross-section, which lies upstream of the baffle surface when viewed from the flow direction of the crankcase ventilation gas, and which is sub-divided into several infeed sub-sections. The baffle surface is a solid surface that is devoid of perforations. The baffle surface is configured on a valve body, which lies downstream of the infeed sub-sections when viewed in the flow direction of the gas, and which is pre-tensioned by a force. The valve body can be displaced in the opening direction in opposition to the pre-tension, as a result of the differential pressure in the gas between the crankcase and the induction tract.
Abstract:
An engine crankcase emission control system for an internal combustion engine includes a cylinder air intake system connected to associated engine cylinders. The system also includes an engine crankcase. A crankcase air outlet connects the crankcase to the cylinder air intake system at a location subject to variable intake vacuum pressures to allow crankcase vapors to be drawn into inlet air passing to the cylinders. A hydrophobic, oleophobic membrane covers the crankcase air outlet. The membrane inhibits the passage of oil and water out of the crankcase through the crankcase air outlet.
Abstract:
A PCV device for recirculation of crankcase air has a structural member with a tubular, substantially linear internal flow passage characterized by a length and diameter with a ratio of length to diameter that attenuates noise and acts as a restrictive orifice to at least partially control flow volume therethrough. A PCV system for an engine includes a structural member as described above placed in fluid communication with a passage member to partially form a flow path between an interior portion of an engine crankcase and an air intake portion of the engine. The flow path has an absence of any flow restriction with a diameter smaller than the diameter of the structural member.
Abstract:
An inertial gas-liquid separator and method is provided, including variable orifice jet nozzle structure having a variable orifice area dependent upon axial movement of a plunger relative to a housing sleeve, and in another embodiment having first and second flow branches, with the first flow branch being continuously open, and the second flow branch having a variable flow controller controlling flow therethrough.
Abstract:
A pressure control valve with a pressurized membrane (5) for closing and opening a gas passage (7) in which a valve chamber (8) pressurized with an ambient pressure (Pamb) is located on the side of membrane (5) that is opposite the gas passage (7) to be closed and opened. The pressure control valve (1) is arranged in such a way that the exit of the gas passage (7) leads directly into a volume with ambient pressure (Pamb). The membrane (5) includes a ventilation hole (9) through which the valve chamber (8) is directly pressurized with ambient pressure (Pamb).
Abstract:
A crankcase ventilation system for an internal combustion engine includes a first valve for controlling air flow into the engine's crankcase, a second valve for controlling air flow out of the crankcase, and a separator for receiving air flowing from the second valve and for removing oil entrained in the air. The first and second valves may be spring-operated valves, such as reed valves.
Abstract:
A closed crankcase emission control system for an internal combustion engine includes a replaceable filter element having a ring of filter media; a first end cap at one end of the media ring; a sump container defined by a second end cap at the other end of the media ring and a cup-shaped valve pan fixed to the second end cap; and a check valve in the valve pan to block blow-by gas flow directly into the filter element during engine operation, and to allow collected oil to flow out of the sump container during engine idle or shut-down. A shut off valve is provided to prevent oil from passing through the emission control system to the engine. The shut off valve comprises a cylindrical float member with a supporting body and a seal, where the body includes a guide member. The float member could also be a ball valve. The float member floats with the level of oil in the housing, and can fluidly seal against a valve seat to prevent oil passing to the engine. The shut off valve can be incorporated into the filter element, into a central support tube of the housing, or into the inlet or outlet fittings for the housing. Supporting structure is provided to maintain the float member in a proper orientation. A pressure relief valve can also be provided upstream from the shut-off valve to relieve system pressure when the shut-off valve is closed.
Abstract:
Method and arrangement for distributing exhaust gases or gases which are ventilated from a crankcase or an evaporator of a combustion engine having a cylinder head (8) with intake valves and an intake manifold (3) with a flange (9) for mounting on the cylinder head. The intake manifold is provided with at least one collecting channel (11) which extends across each intake pipe of the intake manifold. The ventilation is made by sucking the gases from the collecting channel (11) directly into each intake pipe through a non-return valve (16, 17, 18, 19) arranged in connection with each intake pipe, which non-return valve is controlled by pressure pulses from the intake valves.
Abstract:
An intake manifold for an engine is provided that includes a housing having a passageway carrying blow-by gases from an engine crankcase. A valve body housing having a cavity is defined by a portion of the housing. The valve body housing has a vacuum side and a blow-by gas side. The blow-by gas side is in fluid communication with the passageway. A positive crankcase ventilation valve is disposed within the cavity and permits the blow-by gases to flow from the passageway through to the vacuum side when in an open position. A cap is preferably secured to the housing for sealing the positive crankcase ventilation valve within the cavity. Preferably an oil separator is also integrated into the intake manifold to separate the oil from the blow-by gases.