摘要:
The present invention addresses the problem of providing a resin having a high Abbe number and a small difference in hygroscopic expansion coefficient with respect to a polycarbonate resin having a low Abbe number and a high refractive index. The above problem can be solved by a polycarbonate resin including structural units represented by general formula (1). In general formula (1), R represents H, CH3, or C2H5.
摘要:
The invention is to provide polycarbonate resins having excellent light resistance, transparency, hue, heat resistance, thermal stability, and mechanical strength and to provide processes for efficiently and stably producing a polycarbonate resin which stably shows those performances. The invention includes: polycarbonate resins which at least contain structural units derived from a dihydroxy compound having the portion represented by formula (1) as part of the structure thereof and which have specific properties; and processes for producing the polycarbonate resins, where the case where the portion represented by formula (1) is part of —CH2—O—H is excluded.
摘要:
Provided is an aliphatic polycarbonate-co-aromatic polyester with long-chain branches. The copolymer includes repeating units represented by —OAO— and Z(O—)a, which are linked via carbonyl (—C(O)—) and —C(O)YC(O)— as linkers. Also provided is an aliphatic copolycarbonate including repeating units represented by —OAO— and Z(O—)a, which are linked via carbonyl (—C(O)—) linkers. The aliphatic copolycarbonate has a weight average molecular weight of 30,000 or more.
摘要:
A process for the preparation of polycarbonates may include ring-opening polymerization of five-membered cyclic carbonates in the presence of a catalyst; a compound of formula (I), stereoisomers, racemics, or mixtures thereof; and optionally cyclic esters, stereoisomers, racemics, or mixtures thereof. Formula (I) is: Each dotted bond “a” and “b” is a solid bond, a wedged bond, or a hashed wedged bond. R21 and R22, taken together with the carbon atoms 4 and 5 of the cyclic carbonate, may form a ring. The ring may be a C5-9cycloalkylene, C5-9cycloalkenylene, or C6-12arylene. The ring may optionally be substituted with substituents including halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino.
摘要:
The invention is a thermosetting coating composition comprised of an aliphatic polycarbonate resin and a cross linker. The aliphatic polycarbonate resins are derived from hydroxyl containing compounds including 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) and 1,4-cyclohexane dimethanol (CHDM). The coatings made of these polycarbonates exhibit exceptional toughness; they possess a high degree of hardness while maintaining a high level of flexibility/impact resistance. These polycarbonate resins also exhibited better hydrolytic stability as compared to their polyester counterparts.
摘要:
Polyester-co-carbonate polyols and methods for producing the same are provided. The method comprises reacting one or more alcohols having an OH functionality of two or more with one or more organic diacids to form a reaction mixture, adding a first amount of dialkyl carbonate to the reaction mixture to remove water remaining from the reaction mixture by azeotropic drying, adding a transesterification catalyst to the dialkyl carbonate containing reaction mixture and adding a second amount of dialkyl carbonate to the catalyst containing reaction mixture.
摘要:
Hyperbranched polycarbonates having stabilizing groups, prepared by reaction of (a) at least one compound having at least three alcoholic hydroxyl groups per molecule with (b) at least one reagent of the general formula I (c) and at least one reagent of the general formula X3-(A1)m-X4, where the variables are defined as follows: X1, X2 are identical or different and are selected from among halogen, C1-C10-alkoxy, C6-C10-aryloxy and O—C(═O)-halogen, X3 is a functional group selected from among OH, SH, NH2, NH—C1-C4-alkyl, isocyanate, epoxy, COOH, COOR12, C(═O)—O—C(═O), C(═O)—Cl, R12 is C1-C4-alkyl or C6-C10-aryl, A1 is a spacer or a single bond, m is zero or one. X4 is a group selected from among phenol groups, benzophenones, aromatic amines and nitrogen-comprising heterocycles, in each case substituted or unsubstituted.
摘要:
A method for highly polymerizing an aromatic polycarbonate resin, which enables the increase in molecular weight of the aromatic polycarbonate resin satisfactorily while keeping good quality of the resin. An aromatic polycarbonate is linked to an aliphatic diol compound having a boiling point of 240° C. or higher (preferably in an amount of 0.01 to 1.0 mole per mole of the total amount of the terminal of the aromatic polycarbonate) through a transesterification reaction in the presence of a transesterification catalyst under reduced pressure conditions (preferably at a reduced pressure ranging from 13 kPaA (100 torr) to 0.01 kPaA (0.01 torr)), thereby increasing the molecular weight of the resulting molecule. The weight average molecular weight (Mw) of the aromatic polycarbonate after the transesterification reaction can be increased preferably by 5,000 or more compared to that of the aromatic polycarbonate before the transesterification reaction.
摘要:
The present invention relates to compositions which comprise highly-branched polycarbonates, to the use of these highly-branched polycarbonates in cosmetics and dermatology and to substituted highly-branched polycarbonates.
摘要:
A process for manufacturing a polycarbonate, having a glass transition temperature greater than or equal to 50° C., includes: ▪ a step (1) of introducing into a reactor a monomer of formula (I) and R1 and R2 being identical or different alkyl groups; ▪ a step (2) of introducing into the reactor at least one cyclic diol or a mixture of diols (B) including at least 20 mol % of cyclic diols; ▪ a subsequent step (3) of polycondensation via transesterification of the mixture of monomers including the monomers (A) and (B); ▪ a step (4) of recovering the polycarbonate formed during step (3).