Abstract:
The present invention relates to the discovery that specific human taste receptors in the T2R taste receptor family respond to particular bitter compounds present in, e.g., coffee. Also, the invention relates to the discovery of specific compounds and compositions containing that function as bitter taste blockers and the use thereof as bitter taste blockers or flavor modulators in, e.g., coffee and coffee flavored foods, beverages and medicaments. Also, the present invention relates to the discovery of a compound that antagonizes numerous different human T2Rs and the use thereof in assays and as a bitter taste blocker in compositions for ingestion by humans and animals.
Abstract:
The present invention discloses an optically active quanternary ammonium salt having axial asymmetry and a method for producing an α-amino acid and a derivative thereof using the same. The optically active quanternary ammonium salt having axial asymmetry of the present invention is a chiral phase-transfer catalyst that has a simple structure and that can be produced in a smaller number of process steps. The compound of the present invention is very useful as a phase-transfer catalyst in the synthesis of an α-alkyl-α-amino acid and a derivative thereof as well as an α,α-dialkyl-α-amino acid and a derivative thereof. Therefore, the compound of the present invention can be used in the development of novel foods and pharmaceuticals.
Abstract:
This invention relates to novel lactams of Formula (I): having drug and bio-affecting properties, their pharmaceutical compositions and methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
This invention relates to novel cyclic malonamides having the formula (I): to their pharmaceutical compositions and to their methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
This invention relates to novel lactams of Formula (I): having drug and bio-affecting properties, their pharmaceutical compositions and methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
This invention relates to novel cyclic malonamides having the formula (I): to their pharmaceutical compositions and to their methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
This invention relates to novel lactams having the formula (I): to their pharmaceutical compositions and to their methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
Disclosed are compounds which inhibit β-amyloid peptide release and/or its synthesis, and, accordingly, have utility in treating Alzheimer's disease. Also disclosed are pharmaceutical compositions comprising a compound which inhibits β-amyloid peptide release and/or its synthesis as well as methods for treating Alzheimer's disease both prophylactically and therapeutically with such pharmaceutical compositions.
Abstract:
The invention relates to malonamide derivatives of formula wherein A1, A2, R1, R2, R3, and R4 are as defined herein and to pharmaceutically acceptable acid addition salts, optically pure enantiomers, racemates or diastereomeric mixtures thereof for the treatment of Alzheimer's disease.
Abstract:
Disclosed are compounds which inhibit β-amyloid peptide release and/or its synthesis, and, accordingly, have utility in treating Alzheimer's disease. Also disclosed are pharmaceutical compositions comprising a compound which inhibits β-amyloid peptide release and/or its synthesis as well as methods for treating Alzheimer's disease both prophylactically and therapeutically with such pharmaceutical compositions.