Abstract:
A cosmetic applicator, comprising a sponge to absorb substance and prevent leakage thereof is provided herein. The sponge having an elastic open-cell of a three-dimensional membrane structure of elastic polymer and is double over molded in combination with the rigid plastic base. The sponge has predefined density enabling to absorb the substance and skin surface having predefined thickness to prevent a spontaneous release of the substance. The substance may be squeezed out of the sponge only when applying pressure on the sponge. A Radio Frequency Identification (RFID) tag is integrated to the rigid plastic base to allow information related storage
Abstract:
Disposable, pre-sterilized, and pre-calibrated, pre-validated conductivity sensors are provided. These sensors are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the sensor on in a barcode printed on the sensor. The sensors are calibrated using 0.100 molar potassium chloride (KCl) solutions at 25 degrees Celsius. These sensors may be utilize with in-line systems, closed fluid circuits, bioprocessing systems, or systems which require an aseptic environment while avoiding or reducing cleaning procedures and quality assurance variances.
Abstract:
Methods of conducting thrombectomy procedures and deploying a thrombectomy catheter are disclosed. A thrombectomy procedure is conducted with a thrombectomy catheter deployment system. A drive unit configured to operate an infusion pump is provided. The drive unit is operable according to one or more operating modes. A preconnected and consolidated pump and catheter assembly configured for loading in the drive unit is also provided. The assembly is separate from the drive unit prior to loading. The infusion pump and a catheter of the assembly are in communication prior to loading. The assembly provides one or more digital instructions to the drive unit. The drive unit is operable according to the one or more operating modes referenced by the one or more digital instructions. The assembly is loaded into the drive unit, and the drive unit is engaged to the infusion pump for operation of the infusion pump.
Abstract:
A control system (23) is arranged to control the operation of an apparatus (200) for extracorporeal blood treatment. The apparatus (200) comprises an extracorporeal blood circuit (20) and a connection system (C) for connecting the blood circuit (20) to the vascular system of a patient. The blood circuit (20) comprises a blood processing device (6), and at least one pumping device (3). The control system is operable to switch between a pre-treatment mode and a blood treatment mode. The blood treatment mode involves operating the blood circuit (20) to pump blood from the vascular system via the connection system (C) through the blood processing device (6) and back to the vascular system via the connection system (C). The control system (23) is operable to obtain measurement data from at least one energy transfer sensor (40) arranged to sense a transfer of energy between the patient and the connection system (C) or between the patient and the blood circuit (20). The control system (23) is configured to, in the pre-treatment mode, process the measurement data for identification of a characteristic change indicating a connection of the blood circuit (20) to the vascular system of the patient, and, upon such identification, take dedicated action. The action may involve activating at least part of a patient protection system and/or enabling entry into the blood treatment mode. The control system may be included in an apparatus (200) for blood treatment, such as a dialysis machine.
Abstract:
A safety system comprises a transponder (3) and a reading device (5) of an RFID system, the transponder (3) being associated with a pharmaceutical product (2) and the reading device (5) being associated with an application device (4) for the pharmaceutical product (2) and the application device (4) being usable only after being enabled by the RFID system. The transponder (3) is associated, in an inaccessible manner, with a container (7) filled with the pharmaceutical product (2), which can be inserted in the application device (4).
Abstract:
Connector assemblies are provided for controlling flow in a fluid line that include an outer shell, an inner housing, and a tubular member. The inner housing is disposed within the outer shell and includes a boss disposed adjacent a first end of the outer shell. The inner housing is movable axially within the outer shell between first and second positions when a device is connected to the first end. The tubular member is carried by the inner housing and includes a fluid passage extending between a second end of the outer shell. The tubular member moves axially as the inner housing moves between the first and second positions, and cam features on the outer shell and the tubular member cause the tubular member to rotate as the inner housing moves between the first and second positions, thereby opening a fluid path between the fluid passage and the first end.
Abstract:
A device for humidifying respiratory gases is provided. The device includes: an all-polymer humidification chamber; a heating element positioned independently and proximate to the humidification chamber; a base unit supporting the humidification chamber; a computer that sends adjustment instructions to a water filling valve coupled with the humidification chamber; a plurality of sensors determining light within the humidification chamber and coupled with the base unit; an airflow conduit coupled with the humidification chamber; a heater wire within the airflow conduit; and an insulation material with grooves thereon surrounding the heater wire. The adjustment instructions instruct the water filling valve to self-adjust to meet a predetermined water level objective. The airflow conduit delivers gas to the patient. The heater wire heats the gas being delivered. The grooves on the insulation wire wick water within the humidification chamber away to re-evaporation regions.
Abstract:
A system for providing humidification to gas to be provided to a patient to support breathing including: a humidification component configured for adding water vapor to the gas; and a humidification component controller coupled with the humidification component and configured for receiving humidification target value information, the humidification component controller including: a humidification target value determiner configured for determining, based on received humidification target value information, a humidification target value of at least two possible humidification target values, the humidification target value identifying a humidification level setting corresponding to the patient.
Abstract:
In an apparatus for extracorporeal blood treatment, an extracorporeal circuit (6) is connected to a blood chamber (3) of a membrane device (2). A pump (10) displaces a priming fluid from a source of a priming fluid (9) to a drainage (11) for discharging the priming fluid. A control unit (13) is provided with a processor which controls the pump at a preset first flow rate value, and receives from a pressure sensor (12) a first pressure value, compares the first pressure value with a reference pressure value and, on the basis of this comparison, determines whether or not the extracorporeal circuit is of a pediatric type or of an adult type. The invention is particularly useful during a stage of readying a dialysis apparatus.
Abstract:
This disclosure relates to drug delivery devices and related systems and methods. In certain aspects, a drug delivery device includes a pump extending from a surface of the drug delivery device and a door that includes a spring-loaded member exposed along its inner surface. The fluid line can be compressed between the spring-loaded member and the pump in a manner such that the fluid line is occluded in at least one location.