Abstract:
A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. A third trench is at another edge of the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer.
Abstract:
A high voltage bipolar transistor with shallow trench isolation (STI) comprises the areas of a collector formed by implanting first electric type impurities into active area and connected with pseudo buried layers at two sides; Pseudo buried layers which are formed by implanting high dose first type impurity through the bottoms of STI at two sides if active area, and do not touch directly; deep contact through field oxide to contact pseudo buried layers and pick up the collectors; a base deposited on the collector by epitaxial growth and in-situ doped by second electric type impurity, in which the intrinsic base touches local collector and extrinsic base is used for base pick-up; a emitter which is a polysilicon layer deposited on the intrinsic base and doped with first electric type impurities. This invention makes the depletion region of collector/base junction from 1D (vertical) distribution to 2D (vertical and lateral) distribution. The bipolar transistor's breakdown voltages are increased by only enlarge active critical dimension (CD). This is low-cost process.
Abstract:
A PIS capacitor in a SiGe HBT process is disclosed, wherein the PIS capacitor includes: a silicon substrate; a P-well and shallow trench isolations formed in the silicon substrate; a P-type heavily doped region formed in an upper portion of the P-well; an oxide layer and a SiGe epitaxial layer formed above the P-type heavily doped region; spacers formed on sidewalls of the oxide layer and the SiGe epitaxial layer; and contact holes for picking up the P-well and the SiGe epitaxial layer and connecting each of the P-well and the SiGe epitaxial layer to a metal wire. A method of manufacturing the PIS capacitor is also disclosed. The PIS capacitor of the present invention is manufactured by using SiGe HBT process, thus providing one more device option for the SiGe HBT process.
Abstract:
A SiGe HBT having a position controlled emitter-base junction is disclosed. The SiGe HBT includes: a collector region formed of an N-doped active region; a base region formed on the collector region and including a base epitaxial layer, the base epitaxial layer including a SiGe layer and a capping layer formed thereon, the SiGe layer being formed of a SiGe epitaxial layer doped with a P-type impurity, the capping layer being doped with an N-type impurity; and an emitter region formed on the base region, the emitter region being formed of polysilicon. By optimizing the distribution of impurities doped in the base region, a controllable position of the emitter-base junction and adjustability of the reverse withstanding voltage thereof can be achieved, and thereby increasing the stability of the process and improving the uniformity within wafer.
Abstract:
A giant magnetoresistance current sensor comprises an amorphous alloy magnetic ring having an air gap; a DC magnetic bias coil wound onto the amorphous alloy magnetic ring; a DC constant current source supplying power for the DC magnetic bias coil; a giant magnetoresistance chip disposed in the air gap and having positive and negative outputs; an instrument amplifier having a non-inverting input connected to the positive output of the giant magnetoresistance chip, and an inverting input connected to the negative output of the giant magnetoresistance chip; an operational amplifier having a non-inverting input connected to an output of the instrument amplifier; a voltage following resistance connected between an inverting input and an output of the operational amplifier; an analog to digital converter having an input connected to the output of the operational amplifier; and a digital tube display connected to an output of the analog to digital converter.
Abstract:
This invention discloses a semiconductor power device formed in a semiconductor substrate comprises a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region. The semiconductor power device further comprises a body region, a source region and a gate disposed near the top surface of the semiconductor substrate and a drain disposed at a bottom surface of the semiconductor substrate. The semiconductor power device further comprises source trenches opened into the highly doped region filled with a conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises a buried field ring regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. In an alternate embodiment, the semiconductor power device further comprises doped regions surrounded the sidewalls of the source trenches and doped with a dopant of a same conductivity type of the buried field ring regions to function as a charge supply path.
Abstract:
A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. A third trench is at another edge of the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer.
Abstract:
A method for controlling information channel flow is provided according to the present invention, and includes: receiving information from multiple information channels of a data sending device, where the multiple information channels are divided into at least two channel groups, and a group number is set for the at least two channel groups respectively; determining an information channel requiring flow adjustment in the multiple information channels, and obtaining a group number of a channel group including the information channel requiring flow adjustment; generating flow operation information; and sending the flow operation information to the data sending device.
Abstract:
A process for making particles for delivery of drug nanoparticles is disclosed herein. The process comprises the steps of (a) forming a suspension of drug nanoparticles by mixing a precipitant solution with an anti-solvent solution under micro-mixing environment, where the formed nanoparticles have a narrow particle size distribution; (b) providing an excipient to at least one of the precipitant solution, the anti-solvent solution and the suspension of drug nanoparticles, the excipient being selected to maintain said drug nanoparticles in a dispersed state when in liquid form; and (c) drying the suspension of drug nanoparticles containing the excipient therein to remove solvent therefrom, wherein removal of the solvent causes the excipient to solidify and thereby form micro-sized matrix particles, each micro-sized particle being comprised of drug nanoparticles dispersed in a solid matrix of the excipient.
Abstract:
This invention published a parasitic vertical PNP bipolar transistor in BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) process; the bipolar transistor comprises a collector, a base and an emitter. Collector is formed by active region with p-type ion implanting layer. It connects a p-type buried layer which formed in the bottom region of STI (Shallow Trench Isolation). The collector terminal connection is through the p-type buried layer and the adjacent active region. The base is formed by active region with n type ion implanting which is on the collector. Its connection is through the original p-type epitaxy layer after converting to n-type. The emitter is formed by the p-type epitaxy layer on the base region with heavy p-type doped. This invention also comprises the fabrication method of this parasitic vertical PNP bipolar in BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) process. And this PNP bipolar transistor can be used as the IO (Input/Output) device in high speed, high current and power gain BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) circuits. It also provides a device option with low cost.