BACKSIDE ILLUMINATED SENSOR PIXEL STRUCTURE

    公开(公告)号:US20210082975A1

    公开(公告)日:2021-03-18

    申请号:US16575269

    申请日:2019-09-18

    Inventor: Gang Chen Qin Wang

    Abstract: Backside illuminated sensor pixel structure. In one embodiment, an image sensor includes a plurality of photodiodes arranged in rows and columns of a pixel array that are disposed in a semiconductor substrate. Individual photodiodes of the pixel array are configured to receive incoming light through a backside of the semiconductor substrate. The individual photodiodes have a diffusion region formed in an epitaxial region and a plurality of storage nodes (SGs) that are disposed on the front side of the semiconductor substrate and formed in the epitaxial region. An opaque isolation layer having a plurality of opaque isolation elements is disposed proximate to the front side of the semiconductor substrate and proximate to the diffusion region of the plurality of photodiodes. The opaque isolation elements are configured to block a path of incoming light from the backside of the semiconductor substrate toward the storage nodes.

    Image sensor for infrared sensing and fabrication method thereof

    公开(公告)号:US10790322B1

    公开(公告)日:2020-09-29

    申请号:US16543681

    申请日:2019-08-19

    Inventor: Qin Wang Gang Chen

    Abstract: An image sensor include a semiconductor substrate, a first epitaxial layer, a second epitaxial layer, a plurality of photodiodes, and a plurality of pixel isolation structures. The first epitaxial layer is formed on the semiconductor substrate, and the second epitaxial layer is formed on the first epitaxial layer. Each photodiode includes a first diffusion region formed in the first epitaxial layer and a second diffusion region formed in the second epitaxial layer. The second diffusion region is extended through the second epitaxial layer and electrically coupled to the first diffusion region. Each pixel isolation structure include a first isolation structure formed between adjacent first diffusion regions in the first epitaxial layer and a second isolation structure formed between adjacent second diffusion regions in the second epitaxial layer. The second isolation structure is extended through the second epitaxial layer to connect to the first isolation structure.

    CMOS IMAGE SENSOR WITH MULTIPLE STAGE TRANSFER GATE

    公开(公告)号:US20200099878A1

    公开(公告)日:2020-03-26

    申请号:US16141584

    申请日:2018-09-25

    Abstract: An image sensor pixel comprises a first charge storage node configured to have a first charge storage electric potential; a second charge storage node configured to have a second charge storage electric potential and receive charge from the first charge storage node, wherein the second charge storage electric potential is greater than the first charge storage electric potential; and a transfer circuit coupled between the first and the second charge storage nodes, wherein the transfer circuit comprises at least three transfer regions, wherein: a first transfer region is proximate to the first charge storage node and configured to have a first transfer electric potential greater than the first charge storage electric potential and lower than the second charge storage electric potential; a second transfer region is coupled between the first and a third transfer region and configured to have a second transfer electric potential greater than the first charge storage electric potential and lower than the second charge storage electric potential; and the third transfer region is proximate to the third charge storage node and configured to have a third transfer electric potential greater than the first charge storage electric potential and lower than the second charge storage electric potential. Charges are fully transferred from the first charge storage node to the second charge storage node after a plurality of transfer signal pulses.

    Resonant-filter image sensor and associated fabrication method

    公开(公告)号:US10566364B2

    公开(公告)日:2020-02-18

    申请号:US16276561

    申请日:2019-02-14

    Abstract: A resonant-filter image sensor includes a pixel array including a plurality of pixels and a microresonator layer above the pixel array. The microresonator layer includes a plurality of microresonators formed of a first material with an extinction coefficient less than 0.02 at a free-space wavelength of five hundred nanometers. Each of the plurality of pixels may have at least one of the plurality of microresonators at least partially thereabove. The resonant-filter image sensor may further include a layer covering the microresonator layer that has a second refractive index less than a first refractive index, the first refractive index being the refractive index of the first material. Each microresonator may be one of a parallelepiped, a cylinder, a spheroid, and a sphere.

    BACKSIDE ILLUMINATED IMAGE SENSOR WITH SELF-ALIGNED METAL PAD STRUCTURES

    公开(公告)号:US20190088705A1

    公开(公告)日:2019-03-21

    申请号:US15707940

    申请日:2017-09-18

    Inventor: Qin Wang Gang Chen

    Abstract: An image sensor comprises a semiconductor material having a front side and a back side opposite the front side; a dielectric layer disposed on the front side of the semiconductor material; a poly layer disposed on the dielectric layer; an interlayer dielectric material covering both the poly layer and the dielectric layer; an inter-metal layer disposed on the interlayer dielectric material, wherein a metal interconnect is disposed in the inter-metal layer; and a contact pad trench extending from the back side of the semiconductor material into the semiconductor material, wherein the contact pad trench comprises a contact pad disposed in the contact pad trench, wherein the contact pad and the metal interconnect are coupled with a plurality of contact plugs; and at least an air gap isolates the contact pad and side walls of the contact pad trench. The poly layer and the semiconductor material between adjacent two STI structures of a plurality of first and second STI structures are used as hard masks to form the plurality of contact plugs by selectively removing the dielectric materials between a first side of the plurality of first STI structures and the metal interconnect, wherein each of the plurality of contact plugs extends from each of the first side of the plurality of first STI structures through each of the plurality of first STI structures into the interlayer dielectric material and vertically abuts the metal interconnect.

    CMOS image sensor having enhanced near infrared quantum efficiency

    公开(公告)号:US09991309B1

    公开(公告)日:2018-06-05

    申请号:US15642177

    申请日:2017-07-05

    Abstract: An image sensor comprises a semiconductor material having an illuminated surface and a non-illuminated surface; a photodiode formed in the semiconductor material extending from the illuminated surface to receive an incident light through the illuminated surface, wherein the received incident light generates charges in the photodiode; a transfer gate electrically coupled to the photodiode to transfer the generated charges from the photodiode in response to a transfer signal; a floating diffusion electrically coupled to the transfer gate to receive the transferred charges from the photodiode; a near infrared (NIR) quantum efficiency (QE) enhancement structure comprising at least two NIR QE enhancement elements within a region of the photodiode, wherein the NIR QE enhancement structure is configured to modify the incident light at the illuminated surface of the semiconductor material by at least one of diffraction, deflection and reflection, to redistribute the incident light within the photodiode to improve an optical sensitivity, including near-infrared light sensitivity, of the image sensor.

Patent Agency Ranking