Abstract:
Methods and systems for estimating MRA for a hard disk drive are described. The methods and systems described herein provide for real time estimating and correcting magneto-resistive head asymmetry (MRA) in a hard disk drive using analog-to-digital convertor (ADC) samples or counts. Generally, ADC outputs may be obtained by injecting MRA at known values, where an estimated MRA may be derived in real time by applying an equation using particular ADC output values. Once an estimated MRA is obtained, MRA correction may be performed when the estimated MRA is larger than a threshold value, such as by adjusting a channel MRA compensation coefficient.
Abstract:
Systems, circuits, devices and/or methods related to systems and methods for data processing, and more particularly to systems and methods for re-processing data sets not successfully processed during standard processing.
Abstract:
A method and system is disclosed for identification and removal of a memory sector prone to failure. The method performs satisfaction checks on the memory sector and monitors and stores returned Unsatisfied Checks (USC) for analysis by a pattern recognition algorithm. Once a first global iteration is pattern matched with a second global iteration from the sector, the method determines the period of the repetitive pattern. The method then identifies, as the sector prone to failure, the sector having the defined pattern and period. Once identified, the method uses a power management scheme to remove the sector prone to failure from further use by the memory system and displays to a user the details of the action taken.
Abstract:
Aspects of the disclosure pertain to a read channel system and method for providing sector prioritization for promoting improved sector processing performance. The system and method, during processing of sectors of data, prioritize each of the sectors for further processing based upon: a global iteration index of each sector, trapping set characteristics of each sector and processing latency of each sector.
Abstract:
Aspects of the disclosure pertain to a read channel system and method for providing sector prioritization for promoting improved sector processing performance. The system and method, during processing of sectors of data, prioritize each of the sectors for further processing based upon: a global iteration index of each sector, trapping set characteristics of each sector and processing latency of each sector.
Abstract:
A system is described for recovering data from a number of sectors, such as the sectors of a hard disk drive (HDD) disk platter, and so forth. The system receives data from the sectors via a read channel and uses a layered data decoder to recover data from the sectors. A memory is coupled with the processor and configured to retain data received from one or more of the sectors, e.g., in retained sector reprocessing (RSR) embodiments. The system is configured to update messages in different circulant layers of the data decoder's parity-check matrix. The system uses one message update order in a processing iteration, and different message update orders in subsequent reprocessing iterations. In some embodiments, layer reordering is used for RSR. In some embodiments, circulant reordering is used for RSR.
Abstract:
A LDPC decoder includes a processor for targeted symbol flipping of suspicious bits in a LDPC codeword with unsatisfied checks. All combinations of check indices and variable indices are compiled and correlated into a pool of targeted symbol flipping candidates and returned along with symbol indices to a process that uses such symbol indices to identify symbols to flip in order to break a trapping set.
Abstract:
The disclosure is directed to detection of a sync mark location for at least one data sector of a disk by processing a first sector and at least a second sector in parallel. A first set of data samples from the first sector is reframed according to one or more sync mark locations based upon a first selected sync mark location, and a second set of data samples from the second sector is reframed according to one or more sync mark locations based upon a second selected sync mark location. The first set of data samples and the second set of data samples are iteratively reframed and decoded until the first sector or the second sector converges or until all possible sync mark locations have been attempted.