Abstract:
A method for controlling transmission power by a communication apparatus in a wireless communication system supporting a plurality of component carriers. A total transmission power of a physical uplink shared channel (PUSCH) is calculated for a PUSCH transmission on a first component carrier and a sounding reference symbol (SRS) for a SRS transmission on a second component carrier. The PUSCH transmission is prioritized rather than the SRS transmission if the PUSCH transmission overlaps with the SRS transmission in a time domain and the total transmission power exceeds a maximum transmission power configured for the communication apparatus.
Abstract:
A method for transmitting channel quality information (CQI) in a MIMO system is provided that allows a receiver to feed back a CQI value to a transmitter. The method includes receiving a transmission (Tx) pilot signal for each Tx antenna from a base station (BS), measuring a first CQI value of a first codeword and a second CQI value of a second codeword based on the pilot signal, and transmitting the first CQI value of the first codeword and the second CQI value of the second codeword to the BS where at least the first or second CQI value includes specific information capable of indicating a transmission restriction status of a corresponding codeword.
Abstract:
A method is described for receiving data from a base station by a first type user equipment (UE) capable of using a plurality of frequency bands based on resource allocation in a first wireless mobile communication system capable of using the plurality of frequency bands. Each of the plurality of frequency bands has a respective bandwidth for a second wireless mobile communication system. Specific control information is received from the base station indicating whether a specific frequency band among the plurality of frequency bands is used for downlink resource allocation or not. Control information reception resources comprise a common resource area and a first type UE-specific resource area. The common resource area is for both the first type UE and a second type UE, the second type UE adapted for the second wireless mobile communication system not capable of using the plurality of frequency bands.
Abstract:
A method is described for transmitting signals at a communication apparatus in a wireless communication system supporting a plurality of component carriers. A physical uplink shared channel (PUSCH) with uplink control information (UCI) and a PUSCH without the UCI are simultaneously transmitted using the plurality of component carriers. A predefined transmission power determination scheme is used to determine the transmission power of the PUSCH with the UCI, and determine the transmission power of the PUSCH without the UCI. If a total transmission power of the PUSCH with the UCI and the PUSCH without the UCI exceeds a value corresponding to a maximum transmission power configured for the communication apparatus, the determined transmission power of the PUSCH without UCI is adjusted while maintaining the determined transmission power of the PUSCH with the UCI.
Abstract:
A method and communication apparatus for transmitting signals in a wireless communication system supporting a plurality of component carriers are described. A physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH) with uplink control information (UCI) and a PUSCH without the UCI are simultaneously transmitted using the plurality of component carriers. If a total transmission power of the PUCCH, the PUSCH with the UCI and the PUSCH without the UCI exceeds a value corresponding to a maximum transmission power, a transmission power determined for the PUSCH without the UCI is reduced while maintaining transmission powers determined for the PUCCH and the PUSCH with the UCI. The PUCCH and the PUSCH with the UCI are transmitted based on the maintained determined transmission powers, and the PUSCH without the UCI is transmitted based on the reduced transmission power.
Abstract:
A method of allocating resources for transmitting a signal in a Multiple-Input Multiple-Output (MIMO) wireless communication system is disclosed. The method includes allocating one or more spatial resources of a plurality of spatial resources corresponding to first Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols to a first transport block, allocating one or more other spatial resources of the plurality of spatial resources corresponding to the first SC-FDMA symbols to a second transport block, and allocating spatial resources corresponding to second SC-FDMA symbols to the first transport block and the second transport block.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for performing processes in which a terminal determines control channel allocation, as well as to an apparatus for the method. The method comprises the following steps: monitoring, on a first carrier, a first search space, containing a control channel candidate set, for control channels having no carrier indication information; and monitoring, on a second carrier, a second search space, containing a control channel candidate set, for control channels having carrier indication information. If the terminal is set to monitor a plurality of control channel candidates which have the same radio network temporary identifier (RNTI), the same information size, and the same first control channel element (CCE) in the first search space and in the second search space, the control channels are received only in the first search space on the first carrier.
Abstract:
A wireless communication system is disclosed. A method for performing a radio access in the wireless communication system includes dividing an available frequency band into a plurality of subbands, generating a plurality of frequency domain sequences from a plurality of data symbol sequences by independently performing a Fourier transform process in each of the subbands, independently mapping each of the frequency domain sequences to a corresponding subband, generating one or more transmission symbols by performing an inverse Fourier transform process on the plurality of frequency domain sequences mapped to the available frequency band, and transmitting the one or more transmission symbols to a receiver.
Abstract:
A method for transmitting downlink control information and a method for generating a codeword for the same are disclosed. In generating a long code having a low code rate, a basic code of which minimum distance between codes is maximized is repeated by a prescribed number of times and bits of the repeated code are adjusted. Therefore, a minimum distance condition between codes of a long code is satisfied and simultaneously the code be simply generated.
Abstract:
According to one embodiment of the present invention, a method for reporting power headroom in a user equipment of a multi-carrier system, includes receiving a physical downlink control channel (PDCCH) signal comprising uplink resource allocation information from a base station; transmitting at least one of a physical uplink shared channel (PUSCH) signal and a physical uplink control channel (PUCCH) signal to the base station in a predetermined subframe based on the uplink resource allocation information in accordance with a transmission mode; calculating one or more power headroom values for the predetermined subframe in accordance with the transmission mode; and transmitting a report message comprising the one or more power headroom values to the base station, wherein the user equipment reports its first and second type power headroom values when operating in transmission mode A, or reports its first type power headroom value when operating in transmission mode B.