摘要:
Each one of resonators arranged in an N×M MEMS array structure includes substantially straight elongated beam sections connected by curved/rounded sections and is mechanically coupled to at least one adjacent resonator of the array via a coupling section, each elongated beam section connected to another elongated beam section at a distal end via the curved/rounded sections forming a geometric shape (e.g., a rounded square), and the coupling sections disposed between elongated beam sections of adjacent resonators. The resonators, when induced, oscillate at substantially the same frequency, in combined elongating/breathing and bending modes, i.e., beam sections exhibiting elongating/breathing-like and bending-like motions. One or more of the array structure's resonators may include one or more nodal points (i.e., that are substantially stationary and/or experience little movement), which are suitable and/or preferable locations to anchor the resonator/array to the substrate, in one or more areas of the structure's curved sections.
摘要:
A plurality of mechanically coupled MEMS resonators that are arranged in an N x M MEMS array structure. Each MEMS resonators includes a plurality of straight (or substantially straight) elongated beam sections that are connected by curved/rounded sections. Each elongated beam section is connected to another elongated beam section at a distal end via the curved/rounded sections thereby forming a geometric shape (e.g., a rounded square). Further, each resonator is mechanically coupled to at least one other adjacent resonator of the array via a resonator coupling section. The resonator coupling sections may be disposed between elongated beam sections of adjacent resonators. The resonators, when induced, oscillate at the same or substantially the same frequency. The resonators oscillate in a combined elongating (or breathing) mode and bending mode; that is, the beam sections exhibit an elongating-like (or breathing-like) motion and a bending-like motion. The one or more of the resonators of the array structure may include one or more nodal points or areas (i.e., portions of the resonator that are stationary, experience little movement, and/or are substantially stationary during oscillation of the resonator/array) in one or more portions or areas of the curved sections of the structure. The nodal points are suitable and/or preferable locations to anchor the resonator/array to the substrate.
摘要:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a temperature compensated microelectromechanical resonator as well as fabricating, manufacturing, providing and/or controlling microelectromechanical resonators having mechanical structures that include integrated heating and/or temperature sensing elements. In another aspect, the present invention is directed to fabricate, manufacture, provide and/or control microelectromechanical resonators having mechanical structures that are encapsulated using thin film or wafer level encapsulation techniques in a chamber, and including heating and/or temperature sensing elements disposed in the chamber, on the chamber and/or integrated within the mechanical structures. Other aspects of the inventions will be apparent from the detailed description and claims herein.
摘要:
Thermally induced frequency variations in a micromechanical resonator are actively or passively mitigated by application of a compensating stiffness, or a compressive/tensile strain. Various composition materials may be selected according to their thermal expansion coefficient and used to form resonator components on a substrate. When exposed to temperature variations, the relative expansion of these composition materials creates a compensating stiffness, or a compressive/tensile strain.
摘要:
A method for releasing from underlying substrate material micromachined structures or devices without application of chemically aggressive substances or excessive forces. The method starts with the step of providing a partially formed device, comprising a substrate layer, a sacrificial layer deposited on the substrate, and a function layer deposited on the sacrificial layer and possibly exposed portions of the substrate layer and then etched to define micromechanical structures or devices therein. The etching process exposes the sacrificial layer underlying the removed function layer material. Next there are the steps of cleaning residues from the surface of the device, and then directing high-temperature hydrogen gas over the exposed surfaces of the sacrificial layer to convert the silicon dioxide to a gas, which is carried away from the device by the hydrogen gas. The release process is complete when all of the silicon dioxide sacrificial layer material underlying the micromachined structures or devices is removed.
摘要:
There are many inventions described and illustrated herein. In one aspect, the present inventions relate to devices, systems and/or methods of encapsulating and fabricating electromechanical structures or elements, for example, accelerometer, gyroscope or other transducer (for example, pressure sensor, strain sensor, tactile sensor, magnetic sensor and/or temperature sensor), filter or resonator. The fabricating or manufacturing microelectromechanical systems of the present invention, and the systems manufactured thereby, employ wafer bonding encapsulation techniques.
摘要:
There are many inventions described and illustrated herein. In one aspect, the present inventions relate to devices, systems and/or methods of encapsulating and fabricating electromechanical structures or elements, for example, accelerometer, gyroscope or other transducer (for example, pressure sensor, strain sensor, tactile sensor, magnetic sensor and/or temperature sensor), filter or resonator. The fabricating or manufacturing microelectromechanical systems of the present invention, and the systems manufactured thereby, employ wafer bonding encapsulation techniques.
摘要:
A micromechanical resonator structure including a plurality of straight or substantially straight beam sections that are connected by curved or rounded sections. Each elongated beam section is connected to another elongated beam section at a distal end via the curved or rounded sections thereby forming a geometric shape having at least two elongated beam sections that are interconnected via curved or rounded sections (for example, a rounded triangle shape, rounded square or rectangle shape). The structure includes one or more nodal points or areas (i.e., portions of the resonator structure that are stationary, experience little movement, and/or are substantially stationary during oscillation of the resonator structure) in one or more portions or areas of the curved sections of the structure. The nodal points are suitable and/or preferable locations to anchor the resonator structure to the substrate. In operation, the resonator structure oscillates in a combined elongating (or breathing) mode and bending mode; that is, the beam sections (which oscillate or vibrate at the same frequency) exhibit an elongating-like (or breathing-like) motion and a bending-like motion.
摘要:
A method and device for determining a vectorial vehicle velocity by estimating a mean value for the vehicle velocity by using a position-finding device to obtain a first value, and to then compare this first value with a second value estimated using inertial sensors.
摘要:
There are many inventions described and illustrated herein. In one aspect, present invention is directed to a thin film encapsulated MEMS, and technique of fabricating or manufacturing a thin film encapsulated MEMS including an integrated getter area and/or an increased chamber volume, which causes little to no increase in overall dimension(s) from the perspective of the mechanical structure and chamber. The integrated getter area is disposed within the chamber and is capable of (i) “capturing” impurities, atoms and/or molecules that are out-gassed from surrounding materials and/or (ii) reducing and/or minimizing the adverse impact of such impurities, atoms and/or molecules (for example, reducing the probability of adding mass to a resonator which would thereby change the resonator's frequency). In this way, the thin film wafer level packaged MEMS of the present invention includes a relatively stable, controlled pressure environment within the chamber to provide, for example, a more stable predetermined, desired and/or selected mechanical damping of the mechanical structure.