Abstract:
A pipe fusion data management system, including: a data receiving interface for receiving data directly or indirectly from at least one remote source, the data including at least one data field representing at least one of the following: fusion data, pipe data, parameter data, operation data, configuration data, condition data, measurement data, entity data, user data, or any combination thereof; an input for facilitating user input; a storage device for storing received and/or input data; and a processor for generating a visual user interface to display received, input, stored, and/or processed data relating to the fusion, joining and/or installation process.
Abstract:
The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature. Uniform etching allows for an efficient method of reducing a critical dimension of an electrically active structure by simple isotropic etch.
Abstract:
A user device may display, via a graphical user interface, questions associated with a voice menu that is used by an interactive voice response (IVR) system to forward calls. The user device may obtain, via the graphical user interface, user responses to the questions. In addition, the user device may send information corresponding to the user responses to the questions to a remote device. The remote device may query the IVR system to identify a call agent, in a call center, whose profile matches the information, obtain contact information of the call agent from the IVR system, and send the contact information to the user device. Furthermore, the user device may receive the contact information from the remote device and display the contact information via the graphical user interface.
Abstract:
Process variation-tolerant diodes and diode-connected thin film transistors (TFTs), printed or patterned structures (e.g., circuitry) containing such diodes and TFTs, methods of making the same, and applications of the same for identification tags and sensors are disclosed. A patterned structure comprising a complementary pair of diodes or diode-connected TFTs in series can stabilize the threshold voltage (Vt) of a diode manufactured using printing or laser writing techniques. The present invention advantageously utilizes the separation between the Vt of an NMOS TFT (Vtn) and the Vt of a PMOS TFT (Vtp) to establish and/or improve stability of a forward voltage drop across a printed or laser-written diode. Further applications of the present invention relate to reference voltage generators, voltage clamp circuits, methods of controlling voltages on related or differential signal transmission lines, and RFID and EAS tags and sensors.
Abstract:
High precision capacitors and methods for forming the same utilizing a precise and highly conformal deposition process for depositing an insulating layer on substrates of various roughness and composition. The method generally comprises the steps of depositing a first insulating layer on a metal substrate by atomic layer deposition (ALD); (b) forming a first capacitor electrode on the first insulating layer; and (c) forming a second insulating layer on the first insulating layer and on or adjacent to the first capacitor electrode. Embodiments provide an improved deposition process that produces a highly conformal insulating layer on a wide range of substrates, and thereby, an improved capacitor.
Abstract:
A lock assembly has a lock body and a shackle. The shackle has a leg. A locking element is disposed in the lock body. The locking element is selectively engageable to the shackle. A cam is disposed in the lock body. The cam has a lock position for moving the locking element to engage the shackle. There is also an unlocked position for moving the locking element to disengage the shackle. The cam has a shackle removal position for removing the shackle from the lock body. The leg has a shackle removal recess sized to receive the locking element sufficiently so as to permit movement of the cam to the shackle removal position. The cam is configured to displace the locking element into the shackle removal recess.
Abstract:
An example method of manufacturing a solid brazed laminate structure includes stacking a first lamina on a second lamina with an interfacial spacing between them, aligning mating portions of the first lamina and the second lamina, and introducing a braze material at least partially into the interfacial spacing to join the first lamina and the second lamina together. One example solid brazed laminate structure includes a lock assembly. Another example solid brazed structure includes a gear assembly.
Abstract:
Process variation-tolerant diodes and diode-connected thin film transistors (TFTs), printed or patterned structures (e.g., circuitry) containing such diodes and TFTs, methods of making the same, and applications of the same for identification tags and sensors are disclosed. A patterned structure comprising a complementary pair of diodes or diode-connected TFTs in series can stabilize the threshold voltage (Vt) of a diode manufactured using printing or laser writing techniques. The present invention advantageously utilizes the separation between the Vt of an NMOS TFT (Vtn) and the Vt of a PMOS TFT (Vtp) to establish and/or improve stability of a forward voltage drop across a printed or laser-written diode. Further applications of the present invention relate to reference voltage generators, voltage clamp circuits, methods of controlling voltages on related or differential signal transmission lines, and RFID and EAS tags and sensors.
Abstract:
A structure to form flooring transitions having outer surfaces comprising two disparate materials. In a preferred embodiment the flooring transitions includes a T-shaped molding and at least one attachment thereto. The outer surfaces of the T-molding and attachment may be comprised of different materials, even though they may sometimes have the same pattern or décor. For example, the T-molding may have a surface of real wood or veneer and the attachment may have an outer surface of abrasion resistant foil, metal, or even a visual perception element, such as lights or reflective tape. A kit is also disclosed.