Abstract:
A jet engine component includes a body having a wall portion with an external surface exposed to hot gas flow and an internal surface exposed to a cooling air flow. The engine component incorporates an arrangement of cooling holes defined through the wall portion between the external and internal surfaces thereof to permit flow of cooling air from the hollow interior through the wall portion to the exterior of the component. Each cooling hole includes at least one flow inlet at the internal surface of the wall for receiving the cooling air flow, at least a pair of flow outlets at the external surface of the wall for discharging the cooling air flow, and at least a pair of flow branches extending through the wall portion and between the flow inlet and the flow outlets for permitting passage of the cooling air flow from the flow inlet to the flow outlets. In one V-shaped configuration, the flow branches merge and intersect with one another at the flow inlet. In another X-shaped configuration, there are a pair of flow inlets and the flow branches merge and intersect with one another at a location intermediate between and spaced from the flow inlets and outlets. The flow outlets are displaced preferably downstream of the flow inlet relative to the direction of gas flow past the external surface of the wall of the engine component.
Abstract:
A gas turbine engine airfoil includes an outer wall including a suction side, a pressure side, a leading edge, and a trailing edge, the outer wall defining an interior chamber of the airfoil. The airfoil further includes cooling structure provided in the interior chamber. The cooling structure defines an interior cooling cavity and includes a plurality of cooling fluid outlet holes, at least one of which is in communication with a pressure side cooling circuit and at least one of which is in communication with a suction side cooling circuit. At least one of the pressure and suction side cooling circuits includes: a plurality of rows of airfoils, wherein radially adjacent airfoils within a row define segments of cooling channels. Outlets of the segments in one row align aerodynamically with inlets of segments in an adjacent downstream row such that the cooling channels have a serpentine shape.
Abstract:
A composite core die includes a reusable core die; and a disposable core die. The disposable core die is in physical communication with the reusable core die and surfaces of communication between the disposable core die and the reusable core die serve as barriers to prevent the leakage of a slurry that is disposed in the composite core die.
Abstract:
A method of repairing a turbine blade having a radially extending outer wall defining an internal cavity width and a blade tip. The method comprises removing at least a portion of the blade tip to form a repair surface and providing a tip cap having a radially outer side with an outer width that may be less than the internal cavity width, and having a radially inner side with an inner width that is substantially equal to or greater than the internal cavity width. The tip cap is positioned at the repair surface, and the tip cap is welded to the repair surface using a ductile welding material. A cap peripheral portion is formed by build-up welding around the tip cap, and a squealer portion is formed by build-up welding on the cap peripheral portion.
Abstract:
A cooling system for a turbine airfoil of a turbine engine having a trailing edge cooling channel formed from a central trailing edge cooling channel and at least one trailing edge exit slot with a nonlinear longitudinal axis is disclosed. The trailing edge exit slot may be defined by ribs having wavy side edges that form a jagged edge As such, the nonlinear longitudinal axis of the trailing edge exit slot reduces the effective flow area, generates impingement and turbulence to increase heat transfer and provides sufficient mechanical strength for better casting yield without overflowing for better performance The nonlinear trailing edge exit slot may be formed using a ceramic core and investment casting.
Abstract:
A turbine rotor body having at least one inlet orifice in fluid communication with a pre-swirl system such that the inlet orifice receives cooling fluids from the pre-swirl system is disclosed. The inlet orifice may be configured to reduce the relative velocity loss associated with cooling fluids entering the inlet orifice in the rotor, thereby availing the cooling system to the efficiencies inherent in pre-swirling the cooling fluids to a velocity that is greater than a rotational velocity of the turbine rotor body. As such, the system is capable of taking advantage of the additional temperature and work benefits associated with using the pre-swirled cooling fluids having a rotational speed greater than the turbine rotor body.
Abstract:
A gas turbine having rotor discs (9), a disc cavity (13) and a stator stage (25) extending to the disc cavity (13). Seal housing flanges (43, 44) extend from a seal housing (29) of the stator stage (25). Rotor flanges (41i, 41o) extend from a rotor disk (9-1). An inner rotor flange (41i) and first seal housing flange (43) are inward from a second seal housing flange (44). One rotor flange (41o) is outward from the second seal housing flange (44). The inner rotor flange (41i) and first seal housing flange (43) extend toward one another to limit movement of main gas flow (17). An inlet (47) injects air (50) between the outward rotor flange (41o) and second seal housing flange (44).
Abstract:
A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.
Abstract:
A shell air recirculation system for use in a gas turbine engine includes one or more outlet ports located at a bottom wall section of an engine casing wall and one or more inlet ports located at a top wall section of the engine casing wall. The system further includes a piping system that provides fluid communication between the outlet port(s) and the inlet port(s), a blower for extracting air from a combustor shell through the outlet port(s) and for conveying the extracted air to the inlet port(s), and a valve system for selectively allowing and preventing air from passing through the piping system. The system operates during less than full load operation of the engine to circulate air within the combustor shell but is not operational during full load operation of the engine.
Abstract:
A cooling system for a turbine blade of a turbine engine having a bifurcated mid-chord cooling chamber for reducing the temperature of the blade. The bifurcated mid-chord cooling chamber may be formed from a pressure side serpentine cooling channel and a suction side serpentine cooling channel with cooling fluids passing through the pressure side serpentine cooling channel in a direction from the trailing edge toward the leading edge and in an opposite direction through the suction side serpentine cooling channel. The pressure side and suction side serpentine cooling channels may flow counter to each other, thereby yielding a more uniform temperature distribution than conventional serpentine cooling channels.