Abstract:
A method and semiconductor structure to avoid latch-up is disclosed. The method includes identifying at least one high voltage device on a semiconductor chip, identifying a circuit on the semiconductor chip separated from the identified at least one high voltage device by a guard ring, evaluating the circuit for a latch-up condition, and when the latch-up condition occurs, adjusting the contact-circuit spacing in the circuit.
Abstract:
Method and semiconductor structure to avoid latch-up. Method includes identifying at least one high voltage device on a semiconductor chip, identifying a circuit on the semiconductor chip separated from the identified at least one high voltage device by a guard ring, evaluating the circuit for a latch-up condition, and when the latch-up condition occurs, adjusting the contact-circuit spacing in the circuit.
Abstract:
A structure for preventing latchup. The structure includes a latchup sensitive structure and a through wafer via structure bounding the latch-up sensitive structure to prevent parasitic carriers from being injected into the latch-up sensitive structure.
Abstract:
Semiconductor structures and methods of forming semiconductor structures, and more particularly to structures and methods of forming SiGe and/or SiGeC buried layers for SOI/SiGe devices. An integrated structure includes discontinuous, buried layers having alternating Si and SiGe or SiGeC regions. The structure further includes isolation structures at an interface between the Si and SiGe or SiGeC regions to reduce defects between the alternating regions. Devices are associated with the Si and SiGe or SiGeC regions.
Abstract:
A method of manufacturing a semiconductor structure includes: forming a trench in a back side of a substrate; depositing a dopant on surfaces of the trench; forming a shallow trench isolation (STI) structure in a top side of the substrate opposite the trench; forming a deep well in the substrate; out-diffusing the dopant into the deep well and the substrate; forming an N-well and a P-well in the substrate; and filling the trench with a conductive material.
Abstract:
A method and structure for preventing latchup. The structure includes a latchup sensitive structure and a through wafer via structure bounding the latch-up sensitive structure to prevent parasitic carriers from being injected into the latch-up sensitive structure.
Abstract:
The present invention generally relates to a circuit structure and a method of manufacturing a circuit, and more specifically to an electrostatic discharge (ESD) circuit with a through wafer via structure and a method of manufacture. An ESD structure includes an ESD active device and at least one through wafer via structure providing a low series resistance path for the ESD active device to a substrate. An apparatus includes an input, at least one power rail and an ESD circuit electrically connected between the input and the at least one power rail, wherein the ESD circuit comprises at least one through wafer via structure providing a low series resistance path to a substrate. A method, includes forming an ESD active device on a substrate, forming a ground plane on a backside of the substrate and forming at least one through wafer via electrically connected to a negative power supply of the ESD active device and the ground plane to provide a low series resistance path to the substrate.
Abstract:
A diode structure fabrication method. In a P− substrate, an N+ layer is implanted. The N+ layer has an opening whose size affects the breakdown voltage of the diode structure. Upon the N+ layer, an N− layer is formed. Then, a P+ region is formed to serve as an anode of the diode structure. An N+ region can be formed on the surface of the substrate to serve as a cathode of the diode structure. By changing the size of the opening in the N+ layer during fabrication, the breakdown voltage of the diode structure can be changed (tuned) to a desired value.
Abstract:
Apparatus and program product for designing vertical parallel plate (VPP) capacitor structures in which the capacitor plates in different conductive layers of the capacitor stack have a different physical spacing. The methodology optimizes the physical spacing of the plates in each conductive layer to achieve a targeted electrostatic discharge protection level and, thereby, supply electrostatic discharge robustness.
Abstract:
A structure, method and a design structure for preventing latchup in a gate array. The design structure including: a NFET gate array and a PFET gate array in a substrate; an electrically conductive through via extending from a bottom surface of the substrate toward a top surface of the substrate the NFET gate array and PFET gate array, the through via electrically contacting the P-well.