Abstract:
A user equipment transmits a data packet using a selected signature in a time slot of a radio frame within a superframe of a random access channel. The superframe being time divided into radio frames. A base station identifies the selected signature, transmission time slot and transmission radio frame of the data packet. The base station determines an uplink scrambling code for the user equipment based on in part the identified signature, transmission time slot and transmission radio frame. The base station selectively transmits an acknowledgment message based on in part an availability of the determined uplink scrambling code. The user equipment receives the acknowledgment message and transmits a subsequent data packet using the determined uplink scrambling code.
Abstract:
A method for data related downlink signaling including selectively tailoring the UE ID to create a UE ID value, which is then added to a data field to create a data mask. This data mask is then further processed as the CRC field and transmitted with the data burst to provide CRC-related functions. An alternative embodiment discloses initializing a CRC generator with UE identification prior to CRC generation. This implicitly includes the UE ID within the CRC without requiring additional overhead signaling.
Abstract:
A system for balancing a signal having I and Q components includes means for cross correlating the I and Q components to produce a cross correlation product; means for adjusting the gain of each I and Q signal component in accordance with said cross correlation product; and means for adding one component with the adjustable gain of the other component to produce a phase-balanced signal.
Abstract:
A base station transmits access control signals on a periodic basis having a first transmission rate. The base station transmits access control modification signals at a second transmission rate higher than the first transmission rate. The user equipment transmits an access attempt signal. The access attempt signal requests the base station to permit the user equipment access to the random access channel. The user equipment receives the transmitted access control signals and access modification signals. A wait period is determined based on in part the received access control signals and access control modification signals. In response to an unsuccessful access attempt, the user equipment delays transmitting a subsequent access attempt signal for the wait period.
Abstract:
A method and system for an enhanced uplink (EU) operation in a wireless communication system during soft handover. The system comprises a wireless transmit/receive unit (WTRU), at least two Node-Bs, and a radio network controller (RNC). One Node-B may be designated as a primary Node-B, and the primary Node-B may control EU operation during soft handover including uplink scheduling and hybrid automatic repeat request (H-ARQ). Soft buffer corruption is avoided during soft handover by controlling H-ARQ by the primary Node-B. Alternatively, an RNC may control EU operation during soft handover including H-ARQ. In this case, an RNC generates final acknowledge/non-acknowledge (ACK/NACK) decision based on the error check results of the Node-Bs.
Abstract:
A method and apparatus are used for providing assistance data to wireless transmit/receive units (WTRU)s. The assistance data may include information regarding neighboring access points (AP)s. The assistance data may be transmitted to WTRUs using multicast, broadcast, and/or point-to-point signaling. The assistance data may be used to facilitate ring and handover of WTRUs from one AP to another.
Abstract:
Upon the UE transmission power requirement exceeding the maximum or allowable transmission power the MAC may be informed for subsequent TFC selection of all TFCs that currently exceed this limit. The UE may then chose the TFC with the next lower transmission power requirement and the sequence will continue until an acceptable TFC is determined. The system also enables the replacement of the TFCs in the TFCS and advanced determination of non-supported TFCs. The TFCs that require transmission power greater then the maximum or allowed UE transmission power shall be determined continuously in every TTI, not just in TTIs where the maximum power has been exceeded.
Abstract:
The present invention allows for effective sharing of the hardware memory of a wireless transmit receive unit (WTRU). The memory will be shared among various buffers of different entities. More particularly, memory will be shared among the MAC reordering buffers and the RLC reception buffers.
Abstract:
A received channel power indicator (RCPI) value is used as a measure of the received RF power in the selected channel, measured at the antenna connector. This parameter is a measure by the PHY sublayer of the received RF power in the channel measured over the PLCP preamble and over the entire received frame. RCPI is a monotonically increasing, logarithmic function of the received power level defined in dBm.
Abstract:
An enhanced uplink user equipment is in soft handover. A radio network controller selects a primary Node-B out of a plurality of Node-Bs supporting the soft handover. The radio network controller receiving successfully received enhanced uplink data packets from the plurality of Node-Bs. The radio network controller reordered the successfully received enhanced uplink data packets for in-sequence deliver. The primary Node-B sends specified scheduling information to the user equipment that the other Node-Bs does not transmit. At least the primary Node-B transmits acknowledgements and negative acknowledgements to the user equipment.