Abstract:
An interface including roughness components for improving the propagation of radiation through the interface is provided. The interface includes a first profiled surface of a first layer comprising a set of large roughness components providing a first variation of the first profiled surface having a first characteristic scale and a second profiled surface of a second layer comprising a set of small roughness components providing a second variation of the second profiled surface having a second characteristic scale. The first characteristic scale is approximately an order of magnitude larger than the second characteristic scale. The surfaces can be bonded together using a bonding material, and a filler material also can be present in the interface.
Abstract:
A solution for compensating intermodulation distortion of a component is provided. A circuit element includes multiple connected components. At least two of the connected components comprise current-voltage characteristics of opposite signs (e.g., sublinear and superlinear current-voltage characteristics) such that the current-voltage characteristics of the circuit element produces a level of intermodulation distortion for the circuit element lower than a level of intermodulation distortion for each of the connected components.
Abstract:
A light emitting diode is provided, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure. The diode can include a blocking layer, which is configured so that a difference between an energy of the blocking layer and the electron ground state energy of a quantum well is greater than the energy of the polar optical phonon in the material of the light generating structure. The diode can include a composite contact, including an adhesion layer, which is at least partially transparent to light generated by the light generating structure and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.
Abstract:
A device and method for managing terahertz and/or microwave radiation are provided. The device can comprise one or more field effect transistors (FETs) that each include at least one channel contact to a central region of the device channel of the FET. The frequency of the radiation managed by the device can be tuned/adjusted by applying a bias voltage to the FET. The radiation can be impinged on the device, and can be detected by measuring a voltage that is induced by the radiation. Further, the device can generate terahertz and/or microwave radiation by, for example, inducing a voltage between two edge contacts on either side of the device channel and applying the voltage to the channel contact.
Abstract:
An improved light emitting heterostructure and/or device is provided, which includes a contact layer having a contact shape comprising one of: a clover shape with at least a third order axis of symmetry or an H-shape. The use of these shapes can provide one or more improved operating characteristics for the light emitting devices. The contact shapes can be used, for example, with contact layers on nitride-based devices that emit light having a wavelength in at least one of: the blue spectrum or the deep ultraviolet (UV) spectrum.
Abstract:
A solution for designing a semiconductor device, in which two or more attributes of a pair of electrodes are determined to, for example, minimize resistance between the electrodes, is provided. Each electrode can include a current feeding contact from which multiple fingers extend, which are interdigitated with the fingers of the other electrode in an alternating pattern. The attributes can include a target depth of each finger, a target effective width of each pair of adjacent fingers, and one or more target attributes of the current feeding contacts. Subsequently, the device and/or a circuit including the device can be fabricated.
Abstract:
A system for treating a medium, such as water, with ultraviolet light is provided. The system can include an ultraviolet treatment chamber that is shaped to reduce reflections of the ultraviolet light within the ultraviolet treatment chamber and/or improve absorption of the ultraviolet light by the medium. Furthermore, the system can add an agent to the medium within the treatment chamber to further treat one or more contaminants that may be present within the medium. Still further, additional treatment, such as filtering the medium with a permeable material can be implemented within the treatment system.
Abstract:
A solution is provided in which one or more of a plurality of light elements is alternately operated as a light emitting element and a light detecting element. For example, a system can operate a light element as a light detecting element while operating at least one other light element as a light emitting element in order to manage operation of the light elements to generate light having a set of desired attributes, evaluating an operating condition of the other light element(s), and/or the like.
Abstract:
A switch includes an input contact and an output contact to a conducting channel. At least one of the input and output contacts is capacitively coupled to the conducting channel. A control contact is located outside of a region between the input and output contacts, and can be used to adjust the switch between on and off operating states. The switch can be implemented as a radio frequency switch in a circuit.
Abstract:
A group III nitride-based transistor capable of achieving terahertz-range cutoff and maximum frequencies of operation at relatively high drain voltages is provided. In an embodiment, two additional independently biased electrodes are used to control the electric field and space-charge close to the gate edges.