Abstract:
In part, the invention relates to processing, tracking and registering angiography images and elements in such images relative to images from an intravascular imaging modality such as, for example, optical coherence tomography (OCT). Registration between such imaging modalities is facilitated by tracking of a marker of the intravascular imaging probe performed on the angiography images obtained during a pullback. Further, detecting and tracking vessel centerlines is used to perform a continuous registration between OCT and angiography images in one embodiment.
Abstract:
A method and apparatus for determining properties of a tissue or tissues imaged by optical coherence tomography (OCT). In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements and indicium such as color is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. In an alternative embodiment the tissue characteristics is classified automatically by a program given the combination of backscatter and attenuation values.
Abstract:
In part, the disclosure relates to a lens assembly. The lens assembly can be used to direct light for sensing and imaging. In one embodiment, the lens assembly is a component of an intravascular data collection probe such as an optical coherence tomography probe. The lens assembly can include an optical fiber having a first diameter and a gradient index lens that includes a rod having a length L. The rod can include a substantial planar end and a polished end. The rod can include a longitudinal axis and a second diameter. The second diameter is greater than the first diameter in one embodiment. The substantially planar end is optically coupled to an endface of the optical fiber. The refractive index changes along the length L of the rod.
Abstract:
In part, aspects of the invention relate to methods, apparatus, and systems for intensity and/or pattern line noise reduction in a data collection system such as an optical coherence tomography system that uses an electromagnetic radiation source and interferometric principles. In one embodiment, the noise is intensity noise or line pattern noise and the source is a laser such as a swept laser. One or more attenuators responsive to one or more control signals can be used in conjunction with an analog or digital feedback network in one embodiment.
Abstract:
In one embodiment of the invention, a semiconductor optical amplifier (SOA) in a laser ring is chosen to provide low polarization-dependent gain (PDG) and a booster semiconductor optical amplifier, outside of the ring, is chosen to provide high polarization-dependent gain. The use of a semiconductor optical amplifier with low polarization-dependent gain nearly eliminates variations in the polarization state of the light at the output of the laser, but does not eliminate the intra-sweep variations in the polarization state at the output of the laser, which can degrade the performance of the SS-OCT system.
Abstract:
In part, the disclosure relates to an automated method of branch detection with regard to a blood vessel imaged using an intravascular modality such as OCT, IVUS, or other imaging modalities. In one embodiment, a representation of A-lines and frames generated using an intravascular imaging system is used to identify candidate branches of a blood vessel. One or more operators such as filters can be applied to remove false positives associated with other detections.
Abstract:
In part, the disclosure relates to methods of guidewire detection in intravascular data sets such as scan lines, frames, images and combinations thereof. Methods of generating one or more indicia of a guidewire in a representation of blood vessel are also features of the disclosure. A carpet view is generated in one embodiment and regions of relatively higher contrast are detected as candidate guidewire regions. In one embodiment, the disclosure relates to selective removal of guidewire segments from a set of intravascular data and the display of a representation of a blood vessel via a user interface. Representations of a guidewire can be toggled on and off in one embodiment.
Abstract:
The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.
Abstract:
In part, the invention relates to optical caps having at least one lensed surface configured to redirect and focus light outside of the cap. The cap is placed over an optical fiber. Optical radiation travels through the fiber and interacts with the optical surface or optical surfaces of the cap, resulting in a beam that is either focused at a distance outside of the cap or substantially collimated. The optical elements such as the elongate caps described herein can be used with various data collection modalities such optical coherence tomography. In part, the invention relates to a lens assembly that includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film or cover. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. The film can surround a portion of the beam director.
Abstract:
In one embodiment, the invention relates to a processor based method for generating positional and other information relating to a stent in the lumen of a vessel using a computer. The method includes the steps of generating an optical coherence image data set in response to an OCT scan of a sample containing at least one stent; and identifying at least one one-dimensional local cue in the image data set relating to the position of the stent.