Abstract:
The invention provides a breath testing device which visually indicates the presence of ammonia in a patient's breath, in particular ammonia from helicobacter pylori urease infection. The breath testing device comprises a visual indicating agent which changes color in response to ammonia odors, such as 4,4′-bis(dimethylamino)-benzhydrol (Michler's hydrol or BDMB), pararosaniline base and alpha-naphtholbenzein. The indicating agent is applied to a substrate which is then inserted into a tube or straw, which can be attached to the inlet of a breath collection balloon. When the patient blows into the tube or straw, the indicating agent will change color if it detects levels of ammonia which are consistent with helicobacter pylori urease infection.
Abstract:
A process for treating a textile web includes applying a first treatment agent to the web. The web is moved in an open configuration over a contact surface of an ultrasonic vibration system. The ultrasonic vibration system is operated to impart ultrasonic energy to the textile web to facilitate the distribution of the first treatment agent through a first extent of the thickness of the textile web. A second treatment agent is applied to the web. The web is moved in an open configuration thereof over a contact surface of an ultrasonic vibration system. The ultrasonic vibration system is operated to impart ultrasonic energy to the textile web to facilitate the distribution of the second treatment agent through a second extent of the thickness of the web. The second extent is different than the first extent.
Abstract:
A method for reducing odor is provided. In one embodiment, the method comprises modifying the surface of silica particles with a transition metal so that the silica particles are bonded to the transition metal through a covalent or coordinate bond. The method further comprises contacting the modified silica particles with an odorous compound, the transition metal facilitating the capture of the odorous compound.
Abstract:
A package comprising a paper product, a packaging material that encloses the paper product and defines a headspace therebetween, and metal modified nanoparticles having an effective particle diameter of less than about 500 nanometers is provided. The metal modified nanoparticles are configured to neutralize gaseous or odorous compounds within the headspace.
Abstract:
Delivery systems for incorporating functional compounds into substrates for use in various consumer products are disclosed. Specifically, the delivery system includes a carrier component comprising an ultrasonically energized and electrically charged adsorbent and one or more functional compounds. The ultrasonically energized and electrically charged adsorbent can adsorb the desired functional compounds and bind the functional compounds to the surface of the substrate.
Abstract:
The present invention describes a method of neutralizing an organic colorant or stain. The method enables a user to discharge a discoloration caused by staining with a substance having at least a molecular structure containing either a macrocyclic or linear hematin or linear unsaturated carbon chains or a cyclic aromatic chromophore in a rapid and effective manner. The method, in part involves, treating the discoloration with a medium containing unsaturated fatty acids or esters thereof, and a surfactant or a cell-lysing agent in amounts expressed as a ratio ranging from about 1:5, up to about 30:1, respectively. The color of said stain is reduced by a ΔE value of 5 or greater.
Abstract:
The invention provides a breath testing device which includes a visual indicating agent which changes color in the presence of an odor associated with bad breath, such as sulfur and ammonia odors. An example of the visual indicating agent is 4,4′-bis(dimethylamino)-benzhydrol (Michler's hydrol or BDMB) and related dyes having a similar chemical structure. The indicating agent is applied to a substrate which is then inserted into a tube or straw, or which covers one end of a straw. When a user with bad breath blows into the tube or straw, the indicating agent will change color. The breath testing devices provide a quick and affordable means for a user to test their breath, and they may be packaged in discreet, pocket-sized dispensers which can be carried in a pocket or purse.
Abstract:
An ultrasonic treatment chamber and a process for ultrasonically treating a liquid in an ultrasonic treatment chamber include an elongate, generally tubular housing having an inlet and an outlet spaced longitudinally from the inlet. Liquid is directed into the housing at the housing inlet for longitudinal flow within the housing to the housing outlet. Mechanical ultrasonic vibration is generated within the housing in direct contact with the liquid flowing within the housing, with the direct contact being upstream of the housing outlet. A standing acoustic wave is produced within the housing with the standing acoustic wave having a node spaced longitudinally from the housing outlet.
Abstract:
In a process for dyeing a textile web having a first face and a second face opposite the first face, dye is applied to the textile web and the dyed web is then immersed in a flowing treatment liquid with the textile web in a generally open configuration. A contact surface of an ultrasonic vibration system is immersed in the flowing treatment liquid with the contact surface in direct contact with at least a portion of the textile web immersed in the treatment liquid. The ultrasonic vibration system is operated to impart ultrasonic energy to the portion of the textile web immersed in the treatment liquid at the contact surface of the ultrasonic vibration system to facilitate the removal of unbound dye from the textile web for entrainment in the flow of treatment liquid.
Abstract:
The present invention provides nanoparticle based recording mediums, inks and ink compositions, methods of making nanoparticle based recording mediums and inks, nanoparticles and methods for making nanoparticles, methods for stabilizing colorants against electromagnetic radiation (including radiation in the visible wavelength range), methods for enhancing the substrate independent durability performance of inks, and methods for color density control. The nanoparticle based inks deliver better color, color density control, improved printability, enhanced durability, and increased lightfastness, and are capable of being printed on woven and non-woven fabrics and paper products without special treatment or other limitations.