摘要:
A novel family of cyclic polyene natural products isolated from marine actinomycete strain CNQ140 is provided. This novel strain of actinomycetes was obtained from a previously unstudied population of marine actinomycetes that reside in sediments off La Jolla, Calif. Compounds derived from strain CNQ140 have been characterized as having a cyclic polyene-polyol structure; a molecular weight from about 996 to about 1010 in the core ring structure; and at least 58 carbons and at least 14 oxygens. The invention compounds have antitumor and/or anti-microbial activity.
摘要:
This invention provides prokaryotic glycosyltransferases, including a bifunctional sialyltransferase that has both an null2,3- and an null2,8-activity. A null1,4-GalNAc transferase and a null1,3-galactosyltransferase are also provided by the invention, as are other glycosyltransferases and enzymes involved in synthesis of lipooligosaccharide (LOS). The glycosyltransferases can be obtained from, for example, Campylobacter species, including C. jejuni. In additional embodiments, the invention provides nucleic acids that encode the glycosyltransferases, as well as expression vectors and host cells for expressing the glycosyltransferases.
摘要:
Alleles of the lysC gene from corynebacteria that code for desensitized aspartokinases, and to processes for the preparation of L-lysine using bacteria containing these alleles.
摘要:
The invention provides a protein that is a tumor marker protein. This protein can be used to prepare antibodies that bind to the tumor marker protein. These antibodies can be used to reduce, or eliminate metastasis by cancer cells that produce the tumor marker protein. In addition, the invention provides methods that can be used to diagnose cancer, and metastasis by cancer cells.
摘要:
The present invention describes the identification, purification, recombinant production and characterization of novel O-fucosyltransferase enzymes.
摘要:
This invention provides prokaryotic glycosyltransferases, including a bifunctional sialyltransferase that has both an null2,3- and an null2,8-activity. A null1,4-GalNAc transferase and a null1,3-galactosyltransferase are also provided by the invention, as are other glycosyltransferases and enzymes involved in synthesis of lipooligosaccharide (LOS). The glycosyltransferases can be obtained from, for example, Campylobacter species, including C. jejuni. In additional embodiments, the invention provides nucleic acids that encode the glycosyltransferases, as well as expression vectors and host cells for expressing the glycosyltransferases.
摘要:
This invention provides prokaryotic glycosyltransferases, including a bifunctional sialyltransferase that has both an null2,3- and an null2,8-activity. A null1,4-GalNAc transferase and a null1,3-galactosyltransferase are also provided by the invention, as are other glycosyltransferases and enzymes involved in synthesis of lipooligosaccharide (LOS). The glycosyltransferases can be obtained from, for example, Campylobacter species, including C. jejuni. In additional embodiments, the invention provides nucleic acids that encode the glycosyltransferases, as well as expression vectors and host cells for expressing the glycosyltransferases.
摘要:
The present invention provides mutant D-aminoacylases and use thereof. The mutant D-aminoacylases are hard to be inhibited by the substrate and, comprise the amino acid sequences of the D-aminoacylase derived from Alcaligenes denitrificans subsp. xylosoxydans MI-4 strain, wherein amino acid residues at specific sites have been modified. The mutants of the present invention have high reaction specificity as well as resistance to inhibition by the substrate. The present invention enables high-yield production of D-amino acids using higher concentrations of N-acyl-DL-amino acid as the substrate. The mutants of the present invention are useful in producing D-tryptophan in particular.
摘要:
Disclosed are the uses of specific genes of the mevalonate and isoprenoid biosynthetic pathways, and of inactive gene sites (the pseudogene) to (1) enhance biosynthesis of isopentenyl diphosphate, dimethylallyl diphosphate and isoprenoid pathway derived products in the plastids of transgenic plants and microalgae, (2) create novel antibiotic resistant transgenic plants and microalgae, and (3) create a novel selection system and/or targeting sites for mediating the insertion of genetic material into plant and microalgae plastids. The specific polynucleotides to be used, solely or in any combination thereof, are publicly available from GeneBank and contain open reading frames having sequences that upon expression will produce active proteins with the following enzyme activities: (a) acetoacetyl CoA thiolase (EC 2.3.1.9), (b) 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase (EC 4.1.3.5), (c) HMG-CoA reductase (EC 1.1.1.34), (d) mevalonate kinase (EC 2.7.1.36), (e) phosphomevalonate kinase (EC 2.7.4.2), (f) mevalonate diphosphate decarboxylase (EC 4.1.1.33), (g) isopentenyl diphosphate (IPP) isomerase (EC 5.3.3.2), and (h) phytoene synthase (EC 2.5.1.32).
摘要:
The invention relates to nucleic acids which encode insect polypeptides with the biological activity of acetyl-CoA carboxylases, to the polypeptides encoded by them, and to their use for identifying novel, insecticidally active compounds. The invention furthermore relates to methods of finding modulators of these polypeptides, and to the use of these compounds as inhibitors of insect ACCase.