Abstract:
An image sensor includes a housing which receives heat of a circuit board, and a light source which is supported in the housing and radiates light toward a document. The light source is an EL light-emitting element including a light emission section which emits light by organic electroluminescence. The EL light-emitting element extends in a line shape along a scanning direction. A thermal diffusion layer is interposed between the EL light-emitting element and the housing.
Abstract:
An image reading device and a method for manufacturing the same are provided, where the image reading device is capable of being assembled more efficiently. The image reading device includes: an optical part, extending long in a direction; a case, having an accommodating portion for accommodating the optical part; and a light receiving component, accommodated in the case. The optical part is fixed in the accommodating portion through a first adhesive and a second adhesive with hardening time longer than that of the first adhesive.
Abstract:
Exemplary embodiments of a camera module are proposed, the camera module including a PCB (Printed Circuit Board) mounted with an image sensor, a base installed at an upper surface of the PCB and formed with a window at a position corresponding to that of the image sensor, an IRCF (Infrared Cut Filter) installed at an upper surface of the base, and an adhesive member fixing the IRCF to the base.
Abstract:
A contact-type image sensor having an adhesive elastic layer therein includes a protective member including a light transmitting area. An illumination device is provided for illuminating an original, bearing image information thereon, through the protective member. A photosensor device is provided for reading the image information, and imaging structure is provided for focusing light reflected from the original onto the photosensor device. Support structure is provided for integrally supporting the illumination device, the photosensor device, and the imaging structure. An elastic adhesive layer is provided on a contact surface between the protective member and the support structure. The elastic adhesive layer joins the protective member and the support structure.
Abstract:
Exemplary embodiments of a camera module are proposed, the camera module including a PCB (Printed Circuit Board) mounted with an image sensor, a base installed at an upper surface of the PCB and formed with a window at a position corresponding to that of the image sensor, an IRCF (Infrared Cut Filter) installed at an upper surface of the base, and an adhesive member fixing the IRCF to the base.
Abstract:
Exemplary embodiments of a camera module are proposed, the camera module including a PCB (Printed Circuit Board) mounted with an image sensor, a base installed at an upper surface of the PCB and formed with a window at a position corresponding to that of the image sensor, an IRCF (Infrared Cut Filter) installed at an upper surface of the base, and an adhesive member fixing the IRCF to the base.
Abstract:
Exemplary embodiments of a camera module are proposed, the camera module including a PCB (Printed Circuit Board) mounted with an image sensor, a base installed at an upper surface of the PCB and formed with a window at a position corresponding to that of the image sensor, an IRCF (Infrared Cut Filter) installed at an upper surface of the base, and an adhesive member fixing the IRCF to the base.
Abstract:
An image reading device and a method for manufacturing the same are provided, where the image reading device is capable of being assembled more efficiently. The image reading device includes: an optical part, extending long in a direction; a case, having an accommodating portion for accommodating the optical part; and a light receiving component, accommodated in the case. The optical part is fixed in the accommodating portion through a first adhesive and a second adhesive with hardening time longer than that of the first adhesive.
Abstract:
An image sensor includes a housing which receives heat of a circuit board, and a light source which is supported in the housing and radiates light toward a document. The light source is an EL light-emitting element including a light emission section which emits light by organic electroluminescence. The EL light-emitting element extends in a line shape along a scanning direction. A thermal diffusion layer is interposed between the EL light-emitting element and the housing.
Abstract:
An image reading apparatus includes a housing provided with a light passage, a transparent plate mounted on the housing, a light source for emitting light into the light passage, a lens array facing the image reading section on the transparent plate, a plurality of light-receiving elements arranged in an array extending in a primary scanning direction, and a light reflector formed on the transparent plate. The light reflector is offset from the image reading section in the secondary scanning direction, which is perpendicular to the primary scanning direction.