Abstract:
A flaw detector for optically transmissive surfaces having a first light collector above the surface and a second light collector below the surface. A scanning light beam is directed into the first light collector through a beam entrance aperture and only light scattered from the surface is collected. Light specularly reflected from the surface exits the collector through the beam entrance aperture. Similarly, light passing through the surface enters the second collector, but the axial beam component is dumped through an opening in the second collector, while only diffracted light is collected. Preferably, two-stage light collectors are used with the first stage admitting the beam and generating a scattered or diffracted beam component, with the second stage admitting the scattered or diffracted beam component and integrating the component over a collection surface and sampling the integrated portion at a photoelectric detector. An electrical output signal from the detector may be displayed.
Abstract:
An optical input beam is split into first and second beams lying in first and second non-parallel planes. A polygon mirror scanner receives the first and second beams on a single facet and generates first and second angularly displaced, non-parallel synchronized scans. Redirecting means is positioned in the optical path between the scanner and a scanned plane for redirecting a portion of the first and second synchronized scans onto a timing plane to generate third and fourth non-coincident, synchronized scans. A beam position signal consisting of equally spaced, sequential pulses is generated in response to the travel of either the third or fourth synchronized scan along a second scanned line lying within a timing plane. The beam position signal is representative of the position of both the first and second synchronized scans along the first scanned line. The second section of the laser inspection apparatus reads information from a surface having an area illuminated by the dual beams of the optical scanner. The first and second synchronized scans from the optical scanner cause the illuminated area to emit radiation in the form of first and second modulated scans. Segmented radiation detection means includes first, second and sandwiched radiation detection means which each generated an electrical output signal representative of the detected radiation emitted by the first and second modulated scans. Signal processing means receives and selectively combines the electrical output signals from each of the three sections of the segmented radiation detection means in response to the beam position signal and generates first and second modulated output signals. The first modulated output signal is representative of the information residing within the area scanned by the first scan, while the second modulated signal is representative of the information residing within the area scanned by the second scan.
Abstract:
Detection of a rarely occurring event within one or more biological samples includes (a) processing each biological sample to provide a gellable liquid solution comprising concentrated biological sample and a flourochrome designed to associate with a rarely occurring event within the concentrated biological sample; (b) depositing the solution in a layer on a surface of a slide; and (c) scanning the solution on the slide with energy adapted to cause fluorescence of the flourochrome to detect potential instances of the rarely occurring event within the concentrated biological sample in the solution.
Abstract:
A particle detection on a periodic patterned surface is achieved in a method and apparatus using a single light beam scanning at a shallow angle over the surface. The surface contains a plurality of identical die with streets between die. The beam scans parallel to a street direction, while a light collection system collects light scattered from the surface with a constant solid angle. The position of the collection system as well as the polarization of the light beam and collected scattered light may be arranged to maximize the particle signal compared to the pattern signal. A detector produces an electrical signal corresponding to the intensity of scattered light that is colelcted. A processor constructs templates from the electrical signal corresponding to individual die and compares the templates to identify particles. A reference template is constantly updated so that comparisons are between adjacent die. In one embodiment, the templates are made up of registered positions where the signal crosses a threshold, and the comparison is between corresponding positions to eliminate periodic pattern features, leaving only positions representing particles.
Abstract:
A two-stage light collector, including a first stage which admits a scanning beam and a second stage which is optically connected to the first stage and has a light detector therein. The first stage has a shape which re-images diffusely scattered radiation from a target on which the radiation impinges. The first stage directs light toward an entrance aperture in the second stage which indirectly reflects light toward the detector associated with the second stage.
Abstract:
A system for generating a substantially-continuous stream of binary signals representative of the presence of copper on the surface of a fluorescent, substrate of a board. A beam is swept by mirror facets of a rotating mirror drum along a path on the board. When the beam strikes copper it is merely reflected. When the beam strikes the substrate, a fluorescence is produced. The resultant light is gathered by cylindrical lenses and fiber optic bundles. The color of the light is blocked by filters and the fluorescence color energizes photomultiplier tubes. A threshold setting and sensing circuit senses the output of the photomultiplier tubes and controls their bias voltage to produce a constant level of output from fluorescence and then produces a stream of binary signals that are representative of the presence/absence of copper on the surface of the board. The swept beam is split to send a portion of its energy through an optical grating. The intermittent light passing through the optical grating is gathered by a fiber optic bundle and is sensed by a photomultiplier tube. The output of the photomultiplier tube is doubled in frequency and used to sample and store the binary signals in the memory of a scanning converter. The binary signals arrive in short bursts of higher-frequency signals separated by periods of absence of binary data. The binary signals stored in the scanning converter are then read out substantially continuously for subsequent processing at a lower frequency.