Abstract:
A method of manufacturing a semiconductor device includes: forming a first outer box and a second outer box on a wafer, providing a photoresist layer on the wafer; and by removing a portion of the photoresist layer, forming a photoresist pattern including a first opening and a second opening that are horizontally apart from each other, wherein the first opening defines a first inner box superimposed on the first outer box in a plan view, the second opening defines a second inner box superimposed on the second outer box in the plan view, and a horizontal distance between the first opening and the second opening is about 150 μm to about 400 μm.
Abstract:
A method of manufacturing a semiconductor device includes: forming a first outer box and a second outer box on a wafer, providing a photoresist layer on the wafer; and by removing a portion of the photoresist layer, forming a photoresist pattern including a first opening and a second opening that are horizontally apart from each other, wherein the first opening defines a first inner box superimposed on the first outer box in a plan view, the second opening defines a second inner box superimposed on the second outer box in the plan view, and a horizontal distance between the first opening and the second opening is about 150 μm to about 400 μm.
Abstract:
A device for wireless communication using a plurality of antennas including a first local oscillation generator configured to generate a first local oscillation signal for up-converting a first transmission signal, a second local oscillation generator configured to generate a second local oscillation signal for up-converting a second transmission signal, and a phase difference detector configured to, detect a first phase difference between the first local oscillation signal and the second local oscillation signal, and generate a first phase compensation signal based on the first phase difference for adjusting a phase of at least one of the first transmission signal or the second transmission signal.
Abstract:
A phase locked circuit includes an oscillator configured to generate an output clock signal, a first phase detector configured to detect a phase difference between an input clock signal and a feedback clock signal based on the output clock signal, a second phase detector having a wider phase locking range than that of the first phase detector and configured to detect the phase difference between the input clock signal and the feedback clock signal, and a charge pump controller configured to control an output current of a charge pump included in the second phase detector based on the phase difference detected by the first phase detector. When the phase difference between the input clock signal and the feedback clock signal is within the phase locking range of the first phase detector, the oscillator and the first phase detector are connected to each other.
Abstract:
A display driver integrated circuit which includes a distributor configured to output display data; a plurality of first-in first-out (FIFO) memories configured to receive the display data from the distributor according to an external clock and output the display data in response to an internal clock; and a plurality of graphics memories configured to receive the display data from the FIFO memories.