Abstract:
A wafer-level method of testing an integrated circuit (IC) device includes: (i) applying a plurality of test operation signals to a wafer containing the IC device, (ii) generating a test enable signal in response to detecting, on the wafer, a toggling of at least one of the plurality of test operation signals, and then (iii) testing at least a portion of the IC device in response to the generating the test enable signal. The generating may also include generating a test enable signal in response to detecting, on the wafer, an inactive-to-active transition of a toggle detection signal.
Abstract:
A plurality of fuse cells includes a first fuse cell and a second fuse cell. Each of the first and second fuse cells includes a first anti-fuse and a second anti-fuse. A method of programming the fuse cells includes rupturing the first anti-fuse of the first fuse cell based on first data loaded to a program control circuit. The method includes rupturing the second anti-fuse of the first fuse cell before loading second data to the program control circuit. The second data is for rupturing the first anti-fuse of the second fuse cell or the second anti-fuse of the second fuse cell.
Abstract:
A wafer-level method of testing an integrated circuit (IC) device includes: (i) applying a plurality of test operation signals to a wafer containing the IC device, (ii) generating a test enable signal in response to detecting, on the wafer, a toggling of at least one of the plurality of test operation signals, and then (iii) testing at least a portion of the IC device in response to the generating the test enable signal. The generating may also include generating a test enable signal in response to detecting, on the wafer, an inactive-to-active transition of a toggle detection signal.
Abstract:
A wafer-level method of testing an integrated circuit (IC) device includes: (i) applying a plurality of test operation signals to a wafer containing the IC device, (ii) generating a test enable signal in response to detecting, on the wafer, a toggling of at least one of the plurality of test operation signals, and then (iii) testing at least a portion of the IC device in response to the generating the test enable signal. The generating may also include generating a test enable signal in response to detecting, on the wafer, an inactive-to-active transition of a toggle detection signal.
Abstract:
A stacked memory device includes a buffer die, a plurality of memory dies stacked on the buffer die and a plurality of through silicon vias (TSVs). The buffer die communicates with an external device. The TSVs extend through the plurality of memory dies to connect to the buffer die. Each of memory dies includes a memory cell array which includes a plurality of dynamic memory cells coupled to a plurality of word-lines and a plurality of bit-lines. The buffer die includes a test circuit, and the test circuit, in a test mode, performs a test on the dynamic memory cells of a target memory die corresponding to one of the memory dies and store, an address of a memory cell row including at least one defective cell, in at least one column decoder of other memory dies of except the target memory die.
Abstract:
A wafer-level method of testing an integrated circuit (IC) device includes: (i) applying a plurality of test operation signals to a wafer containing the IC device, (ii) generating a test enable signal in response to detecting, on the wafer, a toggling of at least one of the plurality of test operation signals, and then (iii) testing at least a portion of the IC device in response to the generating the test enable signal. The generating may also include generating a test enable signal in response to detecting, on the wafer, an inactive-to-active transition of a toggle detection signal.
Abstract:
A wafer-level method of testing an integrated circuit (IC) device includes: (i) applying a plurality of test operation signals to a wafer containing the IC device, (ii) generating a test enable signal in response to detecting, on the wafer, a toggling of at least one of the plurality of test operation signals, and then (iii) testing at least a portion of the IC device in response to the generating the test enable signal. The generating may also include generating a test enable signal in response to detecting, on the wafer, an inactive-to-active transition of a toggle detection signal.
Abstract:
A method of testing an internal circuit block of anti-fuse circuit and a circuit for detecting a defect in the operation of the internal circuit block such as a defect in a sensing part or in a transfer part thereof. Forming a sensing part testing path in a sensing part connected to an output terminal of anti-fuse array; obtaining a sensing output signal through a sense amplifier in the sensing part by applying a test signal through the sensing part testing path while the anti-fuses in the anti-fuse array are not ruptured; detecting defects in the sensing part by comparing the sensing output signal with a reference data corresponding to the test signal. Defectively operating chips may be effectively repaired by adjusting control terminals within a specific control range upon detection of a defect of internal circuit block.
Abstract:
A wafer-level method of testing an integrated circuit (IC) device includes: (i) applying a plurality of test operation signals to a wafer containing the IC device, (ii) generating a test enable signal in response to detecting, on the wafer, a toggling of at least one of the plurality of test operation signals, and then (iii) testing at least a portion of the IC device in response to the generating the test enable signal. The generating may also include generating a test enable signal in response to detecting, on the wafer, an inactive-to-active transition of a toggle detection signal.