Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, the rollable structure being configured to be rolled and unrolled based on the unit structures, and a display panel structure attached to the rollable structure, wherein respective widths of the unit structures increase in a first direction from a first side of the rollable structure to an opposite second side of the rollable structure.
Abstract:
A display device includes an electronic part, a support part including a through hole overlapping the electronic part, a display part disposed above the support part and including a first area overlapping the through hole, and a second area non-overlapping the through hole, the second area being adjacent to the first area, a polarizing plate disposed above the display part and having a transmission axis parallel to a direction, and a pattern optical layer disposed on the polarizing plate and including first phase retardation parts having a first optical axis, and second phase retardation parts having a second optical axis orthogonal to the first optical axis.
Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, the rollable structure being configured to be rolled and unrolled based on the unit structures, and a display panel structure attached to the rollable structure, wherein respective widths of the unit structures increase in a first direction from a first side of the rollable structure to an opposite second side of the rollable structure.
Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, the rollable structure being configured to be rolled and unrolled based on the unit structures, and a display panel structure attached to the rollable structure, wherein respective widths of the unit structures increase in a first direction from a first side of the rollable structure to an opposite second side of the rollable structure.
Abstract:
An optical film may include a polarizer configured to linearly polarize a first light to provide a linearly polarized light component. The optical film may further include a first semi-transmissive film overlapping the polarizer, configured to transmit the linearly polarized light component, and configured to reflect a first circularly polarized component of a second light. The first circularly polarized component of the second light may have a first wavelength. The optical film may further include a second semi-transmissive film overlapping the first semi-transmissive film, configured to transmit the linearly polarized light component, and configured to reflect a second circularly polarized component of the second light. The second circularly polarized component of the second light may have a second wavelength that is unequal to the first wavelength.
Abstract:
In a method of forming a liquid crystal display device, a black matrix is disposed on a substrate including a switching element formed thereon, a color filter is disposed on the switching element, a pixel electrode is electrically connected to the switching element, and a first alignment layer is disposed on the pixel electrode, to form a first substrate. A second substrate including a second alignment layer is formed. At least one of the first alignment layer and the second alignment layer includes a reactive mesogen. A liquid crystal layer is interposed between the first substrate and the second substrate. A light is irradiated onto the second substrate to provide pretilt angles of liquid crystal molecules of the liquid crystal layer.
Abstract:
A display device includes a display panel including a first non-folding area, a second non-folding area, and a folding area disposed between the first non-folding area and the second non-folding area and foldable with respect to a folding axis, an adhesive layer disposed under the display panel, and a support layer disposed under the adhesive layer, the support layer including a first supporter overlapping the first non-folding area and the second non-folding area, and a second supporter overlapping the folding area. The first supporter and the second supporter include different materials from each other.
Abstract:
A display device includes: a substrate including a display area and a folding area positioned in a portion of the display area; a display structure disposed on the substrate; a protection film disposed on the substrate and overlapping the folding area; an adhesive member disposed between the protection film and the substrate, wherein the protection film adheres to the substrate by the adhesive member; a first antistatic layer disposed between the protection film and the adhesive member, wherein the first antistatic layer includes a first compound; a second antistatic layer disposed on a bottom surface of the protection film, wherein the second antistatic layer includes a second compound; and a supporting member disposed on the second antistatic layer, wherein the supporting member includes an opening overlapping the folding area.
Abstract:
A manufacturing method of an electronic device simplifies the process by performing a patterning process by using an imprinting technology. An electronic device manufactured by the manufacturing method is also disclosed. In one embodiment, the electronic device includes a substrate provided to have a dented portion and a non-dented portion, a gate electrode located at and in direct contact with the dented portion of the substrate, a source electrode and a drain electrode located at the non-dented portion of the substrate, and a semiconductor layer located on the gate electrode and in contact with the source electrode and the drain electrode. The gate electrode, the source electrode, and the drain electrode are formed of at least one of molybdenum, tungsten, copper, aluminum, titanium, an alloy thereof, nanowire, graphene, carbon nanotube, indium tin oxide, indium zinc oxide and combinations thereof.
Abstract:
A method of manufacturing a display device includes: providing a glass including an edge region and an inner region; arranging a light source under the glass; setting a center position of the light source to correspond to an inside of the edge region or an inside of the inner region of the glass; directing light into the glass by using the light source; and detecting a defect in the edge region of the glass by receiving light passing through the glass by using a detection camera.