Abstract:
A display apparatus includes an image data compensator. The image data compensator receives input image data, compensates for the input image data according to a temperature of a display panel to output first compensation image data in order to compensate for a luminance decrease of the display panel according to the temperature of the display panel, and compensates for the first compensation image data according to an efficiency and a life expectancy of a quantum dot to output second compensation image data in order to compensate for a luminance decrease of the display panel by the quantum dot.
Abstract:
A deposition apparatus includes a stage and a deposition module. The stage holds a substrate. The deposition module faces the substrate. The stage relatively moves in a direction relative to the deposition module. The deposition module includes a first feeding unit and a first light exposure unit. The first feeding unit sprays a first raw material toward the substrate. The first light exposure unit is disposed on at least one side of the first feeding unit and provides light to the at least one raw material sprayed on the substrate.
Abstract:
A vapor deposition apparatus includes a first injection unit through which a first raw gas is injected in a first direction, and a first filter unit which is mounted in the first injection unit and includes a plurality of plates separated from one another in the first direction and disposed in parallel to one another, where holes are defined in each of the plurality of plates which is detachably coupled in the first filter unit.
Abstract:
A vapor deposition apparatus for forming a deposition layer on a substrate includes a supply unit that is supplied with a first raw gas to form the deposition layer and an auxiliary gas, wherein the auxiliary gas does not constitute a raw material to form the deposition layer, a reaction space that is connected to the supply unit to be supplied with the first raw gas and the auxiliary gas, a plasma generator in the reaction space to convert at least a portion of the first raw gas into a radical form, and a first injection portion that is connected to the reaction space and that supplies at least a radical material of the first raw gas toward the substrate.
Abstract:
An organic light-emitting apparatus including: a substrate; an organic light-emitting device disposed on the substrate and including a first electrode, a second electrode, and an intermediate layer disposed between the first electrode and the second electrode; and an encapsulation layer provided to cover the organic light-emitting device. The encapsulation layer includes a first inorganic layer including a first fracture point, and a first fracture control layer provided on the first inorganic layer to seal the first fracture point.
Abstract:
A vapor deposition apparatus for depositing a thin film on a substrate, by which a deposition process is efficiently performed and deposition film characteristics are easily improved, and a vapor deposition apparatus including: a stage onto which a substrate is disposed; and a supply unit disposed to face the substrate and having a main body member and a nozzle member disposed on one surface of the main body member facing the substrate, to sequentially supply a plurality of gases towards the substrate, and a method of manufacturing an organic light-emitting display apparatus using the same.
Abstract:
A flexible display apparatus includes: a flexible substrate; a display unit on the flexible substrate; and a thin-film encapsulating layer on the display unit. The thin-film encapsulating layer includes at least one organic layer and at least one inorganic layer. The inorganic layer comprises carbon having a concentration gradient distributed at an interface between the at least one organic layer and the at least one inorganic layer. A manufacturing method of the flexible display apparatus is also disclosed.
Abstract:
A deposition apparatus is configured to form a deposition layer on a substrate. The deposition apparatus includes a deposition source configured to face a first side of the substrate and to spray one or more depositing materials toward the substrate, a cooling stage configured to support a second side of the substrate that is opposite from the first side of the substrate, and a hardening unit configured to harden the one or more depositing materials sprayed from the deposition source and that have reached the substrate. A method of forming a thin film deposition layer on a substrate by using a deposition apparatus is also provided. The method includes spraying one or more depositing materials toward the substrate by using a deposition source of the deposition apparatus while the substrate is on a cooling stage of the deposition apparatus.
Abstract:
A display apparatus includes a first substrate and a second substrate opposing to the first substrate. The first substrate includes a transmission area in which a shutter unit is disposed and an emission area in which an organic light emitting diode is disposed. The shutter unit includes a first shutter electrode, a second shutter electrode, and a shutter layer interposed between the first and second shutter electrodes. The organic light emitting diode includes a pixel electrode, a common electrode, and a light-emitting layer interposed between the pixel and common electrodes. At least one of the first and second shutter electrodes is connected to the common electrode of the organic light emitting diode.
Abstract:
A vapor deposition apparatus for providing a deposition film on a substrate, the vapor deposition apparatus includes a plurality of first nozzle parts which injects a first raw material toward the substrate; a plurality of second nozzle parts which is alternately disposed together with the plurality of first nozzle parts and injects a second raw material toward the substrate; a diffuser unit which distributes the second raw material to the plurality of second nozzle parts; and a supply unit which supplies the second raw material to the diffuser unit.