Abstract:
A display device includes a first substrate, a pixel structure, a first optical filter, a first-color filter, a second optical filter, a second-color filter, and a second substrate. The pixel structure is disposed between the first substrate and each of the optical filters. The first-color filter is disposed on the first optical filter and has a first refractive index. The second optical filter is spaced from the first optical filter and includes a second-color pigment. The second-color filter is disposed on the second optical filter and has a second refractive index. The second substrate is disposed on the first color filter and the second color filter and has a third refractive index. A difference between the third refractive index and the second refractive index is less than a difference between the third refractive index and the first refractive index.
Abstract:
A display device includes: a display panel; and a color conversion panel overlapping the display panel, wherein the color conversion panel includes a red color conversion layer and a green color conversion layer including a semiconductor nanocrystal, and a transmissive layer; a red color filter overlapping the red color conversion layer; a green color filter overlapping the green color conversion layer; and a blue color filter overlapping the transmissive layer and a light blocking member, and the light blocking member includes at least one of a blue dye and a blue pigment.
Abstract:
A display device array substrate includes first and second light blocking regions, a first insulation layer disposed on the first light blocking region, a second insulation layer disposed on the second light blocking region, a light blocking member including a first part disposed on the first light blocking region and the first insulation layer, a second part disposed on the second light blocking region and the second insulation layer, and a third part disposed on a boundary between the first and second light blocking regions. A minimum height from an upper surface of the first insulation substrate to an upper surface of the third part is lower than a minimum height from the upper surface of the first insulation substrate to an upper surface of the first part and a minimum height from the upper surface of the first insulation substrate to an upper surface of the second part.
Abstract:
A liquid crystal including: a first substrate; a pixel electrode disposed on the first substrate and including a first subpixel electrode and a second subpixel electrode disposed in one pixel area; a second substrate facing the first substrate; and a common electrode disposed on the second substrate, wherein an area of a region occupied by the first subpixel electrode is less than an area of a region occupied by the second subpixel electrode. Each of the first and second subpixels has a cross-shaped stem and minute branches extending from it to improve side visibility quality and gray scale uniformity.
Abstract:
A liquid crystal display includes first and second substrates, first and second alignment layers, and a liquid crystal layer between the alignment layers and including liquid crystal molecules. The liquid crystal molecules on a surface of the first alignment layer have a first pretilt angle in a direction which is vertical with respect to a horizontal plane surface parallel to the first substrate, and a first alignment angle in a direction which is horizontal with respect to a horizontal line parallel to the horizontal plane surface. The liquid crystal molecules on a surface of the second alignment layer have a second pretilt angle in the direction which is vertical with respect to the horizontal plane surface and different from the first pretilt angle, and a second alignment angle in the direction which is horizontal with respect to the horizontal line and different from the first alignment angle.
Abstract:
A liquid crystal including: a first substrate; a pixel electrode disposed on the first substrate and including a first subpixel electrode and a second subpixel electrode disposed in one pixel area; a second substrate facing the first substrate; and a common electrode disposed on the second substrate, wherein an area of a region occupied by the first subpixel electrode is less than an area of a region occupied by the second subpixel electrode. Each of the first and second subpixels has a cross-shaped stem and minute branches extending from it to improve side visibility quality and gray scale uniformity.
Abstract:
A display panel includes light emitting elements which generate source light, pixel regions from which light is emitted, a layer including light control patterns, and a layer including light shielding patterns which are in each of the pixel regions and are spaced apart from each other within a respective pixel region, where the light shielding patterns each includes a first light shielding pattern including a light shielding material, and a second light shielding pattern which corresponds to the first light shielding pattern, includes a metal material and is closer to the layer including the light control patterns than the first light shielding pattern.
Abstract:
A display module includes a display panel on which a display area and a non-display area surrounding the display area are defined and a functional layer disposed on the display panel. Here, the functional layer includes a color filter layer including a plurality of color filters and a plurality of first light shielding layers each disposed between the plurality of color filters, a light control layer including a plurality of light control parts overlapping the plurality of color filter layers, respectively, wherein at least one of the plurality of light control parts includes a quantum dot, and a heat conductive layer. The heat conductive layer includes at least one of metal, graphite, and silicon carbide.
Abstract:
The present invention relates to a liquid crystal display including: a lower electrode including a unit pixel electrode; an upper electrode including an upper unit electrode facing the unit pixel electrode; and a liquid crystal layer between the lower electrode and the upper electrode and including a plurality of liquid crystal molecules aligned approximately perpendicular to the surfaces of the lower electrode and the upper electrode in the absence of an electric field, wherein the unit pixel electrode includes a stem forming a boundary between a plurality of sub-regions and a plurality of minute branches extending in different directions in two different sub-regions, the upper unit electrode includes an opening facing the stem and extending parallel to the stem, any alignment aid to pretilt the liquid crystal molecules is absent, and a length of the minute branches is equal to or less than about 53 μm.
Abstract:
The present invention relates to a liquid crystal display including: a lower electrode including a unit pixel electrode; an upper electrode including an upper unit electrode facing the unit pixel electrode; and a liquid crystal layer between the lower electrode and the upper electrode and including a plurality of liquid crystal molecules aligned approximately perpendicular to the surfaces of the lower electrode and the upper electrode in the absence of an electric field, wherein the unit pixel electrode includes a stem forming a boundary between a plurality of sub-regions and a plurality of minute branches extending in different directions in two different sub-regions, the upper unit electrode includes an opening facing the stem and extending parallel to the stem, any alignment aid to pretilt the liquid crystal molecules is absent, and a length of the minute branches is equal to or less than about 53 μm.