Abstract:
A method, apparatus, and computer-readable medium at a transmitting network device or a target network device in a listen-before-talk (LBT) session that employ a spatial LBT procedure is disclosed. The spatial LBT procedure takes into account multiple-input multiple-output (MIMO) configuration information in measuring an effective interference. Accordingly, the spatial LBT procedure enables the transmitting network device or the target network device to more accurately measure an interference and make a more accurate decision on whether a channel is clear, and thus improves the system-wide performance. Also, the spatial LBT procedure allows the transmitting network device or the target/receiving network device to adaptively adjust the LBT power detection threshold when the MIMO configuration is not available. This also enables the network devices to more accurately measure interference and make a more accurate decision on whether the channel is clear, especially when advanced MIMO technologies are deployed in 5G or beyond.
Abstract:
Techniques for reservation coordination on a shared communication medium are disclosed. An access point, for example, may contend for access to a communication medium, and transmit a channel reservation message in accordance with a first Radio Access Technology (RAT) to reserve the communication medium for a transmission opportunity (TXOP) duration based on the contending. The access point may then transmit, during the reserved TXOP duration, a reservation coordination signal in accordance with a second RAT to convey reservation coordination information associated with the reserved TXOP duration.
Abstract:
Wireless communication systems and methods related to spectrum use negotiations are provided. A first wireless communication device transmits, to a controlling entity of a spectrum, a spectrum use request for a local operator to use the spectrum for a time period. The first wireless communication device receives, from the controlling entity, a spectrum use grant indicating that the local operator is promoted from a first priority to a second priority for accessing the spectrum during the time period. The first wireless communication device communicates with a second wireless communication device in the spectrum during the time period based on the second priority, where at least the first wireless communication device or the second wireless communication device is associated with the local operator.
Abstract:
The present disclosure describes a method, an apparatus, and a computer-readable medium for use in providing reverse time alignment in a wireless network. For example, the method may include obtaining a first timing value from a serving node and a second timing value from each of one or more non-serving nodes of the UE, computing one or more timing differences between the first timing value and each of one or more second timing values, and reporting the one or more timing differences to the serving node. Additionally, the disclosure describes a method, an apparatus and a computer-readable medium for use in providing time alignment in a consolidated multi-point (CoMP) transmission network by obtaining of a CoMP transmission network timing information from a plurality of user equipments (UEs) and storing the timing information for each of the plurality of UEs for communicating with the first node.
Abstract:
Techniques for managing access to a shared communication medium are disclosed. Scheduling grants may be sent to different access terminals for different sets of resources for uplink transmission on the communication medium. A series of re-contention gaps may be scheduled for access terminal contention within or between the different sets of resources. Uplink and downlink transmission on the communication medium may be silenced during each of the series of re-contention gaps. Moreover, an access terminal may receive a scheduling grant that allocates a set of resources to the access terminal for uplink transmission on a communication medium and contend for access to the communication medium based on the scheduling grant. The access terminal may then selectively transmit uplink traffic over the allocated set of resources based on the contending.
Abstract:
Wireless communications systems and methods related to SDMA operations across multiple network operating entities are provided. A first wireless communication device transmits a communication indicating a reservation for one or more spatial layers in a transmission opportunity (TXOP) of a shared spectrum. The shared spectrum is shared by a first network operating entity and a second network operating entity. The first wireless communication device is associated with the first network operating entity. The first wireless communication device communicates, with a second wireless communication device, data over the one or more spatial layers during the TXOP. The second wireless communication device is associated with the first network operating entity.
Abstract:
The present disclosure provides for fast radio resource management procedures for new radio. Generally, a fixed frame structure is utilized and all base stations are synchronized. A base station may transmit a reservation request during a first control slot for the base station in a reservation channel at a beginning of a synchronized frame. A first user equipment may transmit and the base station may receive a reservation response during a second control slot. The base station may receive, from the first UE, after a third control slot of the reservation channel for a neighboring base station, a reservation indication based on a measurement by the first UE of the neighboring base station or at least one other UE associated with the neighboring base station. The base station may determine, based on the resource indication, whether to schedule the first UE during a data channel of the synchronized frame.