Abstract:
Techniques for managing channel reservation on a shared communication medium are disclosed. An access point or an access terminal contending for access to a communication medium shared between a first Radio Access Technology (RAT) and a second RAT, for example, may encode a first portion of a channel reservation message defined by the first RAT with a transmission opportunity duration associated with the second RAT and also encode a second portion of the channel reservation message with the transmission opportunity duration. The access point or the access terminal may then transmit, over the communication medium, the channel reservation message including the first and second portions to reserve the communication medium based on the contending.
Abstract:
Techniques for co-existence on a shared communication medium are disclosed. To foster co-existence, operation of a first Radio Access Technology (RAT) may be cycled between active periods and inactive periods of transmission, on a communication medium shared with a second RAT, in accordance with a Discontinuous Transmission (DTX) communication pattern. An identifier may be selected for association with the first RAT. A channel reservation message associated with the second RAT may then be transmitted, over the communication medium, to reserve the communication medium for one of the active periods, the channel reservation message including the identifier.
Abstract:
The present disclosure presents a method and apparatus for identifying an access point (AP) for selection by an access terminal (AT). For example, the method may include receiving a probe request by one or more APs from an AT, wherein the probe request is broadcasted by the AT to the one or more APs, generating load information and Received Signal Strength Indicator (RSSI) values of the probe request at the one or more APs, identifying an AP of the one or more APs for selection by the AT, wherein the AP for selection by the AT is identified by the one or more APs based at least on the load information and RSSI values generated at the one or more APs, and transmitting information of an AP identified by the one or more APs to the AT. As such, an improved mechanism for selecting an access point may be achieved.
Abstract:
Apparatus and methods of wireless communications are described for determining one or more bands (e.g., guard bands in wireless local area networks (WLANs)) in unused portions of an unlicensed spectrum, positioning one or more carriers for cellular communication (e.g., long term evolution (LTE) or LTE advanced communication) in the one or more bands, and performing the cellular communication over the unlicensed spectrum using the one or more carriers. In some non-limiting example aspects, the cellular communication may be in a standalone mode and the one or more carriers may include a primary component carrier (PCC) that is positioned in a Wi-Fi guard band. In these non-limiting example aspects, the apparatus and methods may further include allocating one or more secondary component carriers (SCCs) in Wi-Fi guard bands or in Wi-Fi channels, where the one or more SCCs are opportunistically tuned or turned ON/OFF based on cell loading or backhaul constraints.
Abstract:
Techniques for reservation coordination on a shared communication medium are disclosed. An access point, for example, may contend for access to a communication medium, and transmit a channel reservation message in accordance with a first Radio Access Technology (RAT) to reserve the communication medium for a transmission opportunity (TXOP) duration based on the contending. The access point may then transmit, during the reserved TXOP duration, a reservation coordination signal in accordance with a second RAT to convey reservation coordination information associated with the reserved TXOP duration.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Systems and methods for co-existence between wireless Radio Access Technologies (RATs) employing channel reservation on a shared communication medium are disclosed. One or more channel reservation messages defined for a first RAT may be received to reserve the communication medium for a reservation duration, with the communication medium comprising a plurality of component channels. A first component channel may be determined among the plurality of component channels to be protected for operation of a second RAT in accordance with the one or more channel reservation messages. Communication via the first RAT may nevertheless proceed on a second component channel among the plurality of component channels during the reservation duration.
Abstract:
A method of interference management for a wireless device in a wireless communication system may comprise, for example, receiving, at a first wireless device from a second wireless device of the wireless communication system, channel measurement statistics associated with a communication channel of the wireless communication system, comparing the channel measurement statistics to a corresponding bursty interference signature characteristic of bursty interference, identifying a bursty interference condition on the communication channel based on the comparison, and generating a bursty interference indicator based on the identification of the bursty interference condition. Other methods of interference management for a wireless device in a wireless communication system are also disclosed.
Abstract:
Techniques for channel selection and related operations in a shared spectrum environment are disclosed. In one example, a channel selector or the like may be used to select one of a number of available channels as an operating channel based on a comparison of cost functions for each of the available channels, with the cost functions being based on separate utility and penalty metrics. In another example, a channel scanner or the like may be used to trigger a channel scan in response to a channel quality metric indicating poor service for a threshold number or proportion of access terminals. In another example, an operating mode controller may be used to trigger a Time Division Multiplexing (TDM) mode on an operating channel in response to a utilization metric being above a threshold. The TDM mode may cycle operation between activated and deactivated periods in accordance with a TDM communication pattern.
Abstract:
The disclosure is related to selecting an operating channel for a cellular network to reduce interference to a wireless local area network (WLAN) operated by a small cell comprising a WLAN access point and a cellular network modem. The small cell performs a channel scan of available channels, determines whether or not there is a clean channel to be the operating channel for the cellular network based on the channel scan, wherein a clean channel comprises a channel that interferes with the WLAN less than a WLAN interference threshold, and selects the clean channel as the operating channel for the cellular network based on the clean channel being available or turns off the cellular network based on no clean channel being available.