Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may adaptively switch between hybrid automatic repeat request (HARQ) monitoring modes to support power savings. In a first HARQ skipping mode, the UE may transmit an uplink message corresponding to a HARQ identifier and may receive a positive acknowledgment (ACK) message in a HARQ monitoring occasion associated with the HARQ identifier. Upon receiving the ACK message, the UE refrains from monitoring a subsequent HARQ monitoring occasion associated with the HARQ identifier while in the first HARQ skipping mode (e.g., an aggressive HARQ skipping mode). The UE may periodically enter a periodic evaluation mode from the first HARQ skipping mode, in which the UE monitors a subsequent HARQ monitoring occasion after receiving an ACK message to check for false ACK messages. If a false ACK message is detected, the UE enters a first HARQ skipping prohibited mode.
Abstract:
Aspects related to allocating transmission power in wireless communications are described. It can be determined whether data is to be transmitted on an uplink control channel in one or more upcoming transmission time intervals (TTIs). Based on this determination, transmission power is allocated to an uplink enhanced dedicated channel in the one or more upcoming TTIs. Where uplink control channel data is not to be transmitted in the one or more upcoming TTIs, transmission power that would have been used for the uplink control channels can instead be allocated to the enhanced dedicated channel.
Abstract:
A user equipment (UE) and a method of using the UE are provided for fulfilling a network's intent to increase or decrease the serving grant for the UE in spite of a deadlock condition that may otherwise prevent fulfillment of the network's intent. That is, upon determining the network's intent, the UE may alter its serving grant according the intent by altering the number of packets for transmission in a TTI.
Abstract:
Embodiments include systems and methods for performing selection of a transport format combination by a device processor of a wireless communication device. The device processor may determine whether radio frequency self-jamming interference is detected at the receiver of the wireless communication device. The device processor may calculate an average transmit power reduction in response to determining that radio frequency self-jamming interference is detected at a receiver of the wireless communication device. The device processor may select a transport format combination based on the calculated average transmit power reduction, and may use the selected transport format combination to transmit data to a communication network.
Abstract:
Techniques for prioritizing non-scheduled data are described. Non-scheduled data to be transmitted on a non-scheduled MAC-d flow having a non-scheduled priority and scheduled data to be transmitted on a scheduled MAC-d flow having a scheduled priority may be identified by a user equipment (UE). The UE may transmit the non-scheduled MAC-d flow and the scheduled MAC-d flow according to a priority condition. In one aspect, the UE may receive a pre-allocation of power associated with a non-empty non-scheduled MAC-d flow. Based on a priority condition that the non-scheduled priority is a highest priority, the UE may apply all of the pre-allocation of power when transmitting the non-scheduled MAC-d flow. In one aspect, based on a priority condition that the non-scheduled priority is a lower priority, the UE may adjust the non-scheduled priority and/or the scheduled priority so that the non-scheduled priority is a higher priority.
Abstract:
A user equipment (UE) and a method of using the UE are provided for fulfilling a network's intent to increase or decrease the serving grant for the UE in spite of a deadlock condition that may otherwise prevent fulfillment of the network's intent. That is, upon determining the network's intent, the UE may alter its serving grant according the intent by altering the number of packets for transmission in a TTI.
Abstract:
Aspects of the present disclosure provide techniques to enable enhanced machine type communication (s) (eMTC) and/or narrowband Internet-of-Things (NB-IoT) devices to transition to idle mode after releasing a connection, such as a radio resource control (RRC) connection, more quickly than with previously known techniques. An example method includes determining, based on an indication received in a narrowband signal on a narrowband region of a bandwidth comprising a plurality of narrowband regions, whether to wait for a delay period, determined based on a configuration received from a network entity, before releasing a radio resource control (RRC) connection and releasing the RRC connection at a time in accordance with the determination.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may adaptively switch between hybrid automatic repeat request (HARQ) monitoring modes to support power savings. In a first HARQ skipping mode, the UE may transmit an uplink message corresponding to a HARQ identifier and may receive a positive acknowledgment (ACK) message in a HARQ monitoring occasion associated with the HARQ identifier. Upon receiving the ACK message, the UE refrains from monitoring a subsequent HARQ monitoring occasion associated with the HARQ identifier while in the first HARQ skipping mode (e.g., an aggressive HARQ skipping mode). The UE may periodically enter a periodic evaluation mode from the first HARQ skipping mode, in which the UE monitors a subsequent HARQ monitoring occasion after receiving an ACK message to check for false ACK messages. If a false ACK message is detected, the UE enters a first HARQ skipping prohibited mode.
Abstract:
Embodiments include systems and methods for performing selection of a transport format combination by a device processor of a wireless communication device. The device processor may determine whether radio frequency self-jamming interference is detected at the receiver of the wireless communication device. The device processor may calculate an average transmit power reduction in response to determining that radio frequency self-jamming interference is detected at a receiver of the wireless communication device. The device processor may select a transport format combination based on the calculated average transmit power reduction, and may use the selected transport format combination to transmit data to a communication network.
Abstract:
This disclosure provides systems, methods, and devices for combined packet transfer from a modem to a radio frequency (RF) module. In a first aspect, a method of combined packet transfer includes receiving, by a modem coupled to a radio frequency (RF) module through a first bus, a plurality of packets for transmission to the RF module for storage in a memory of the RF module, combining, by the modem, two or more of the plurality of packets to generate a first combined packet, and transmitting, by the modem, the first combined packet to the RF module via the first bus for storage in the memory. Other aspects and features are also claimed and described.