Abstract:
An apparatus is configured to render graphics content to reduce latency of the graphics content. The apparatus includes a display configured to present graphics content including a first portion corresponding to an area of interest and further including a second portion. The apparatus further includes a fovea estimation engine configured to generate an indication of the area of interest based on scene information related to the graphics content. The apparatus further includes a rendering engine responsive to the fovea estimation engine. The rendering engine is configured to perform a comparison of a first result of an evaluation metric on part of the area of interest with a second result of the evaluation metric with another part of the area of interest. The rendering engine is further configured to render the graphics content using predictive adjustment to reduce latency based on the comparison.
Abstract:
Disclosed are methods and systems for intelligent adjustment of an immersive multimedia workload in a portable computing device (“PCD”), such as a virtual reality (“VR”) or augmented reality (“AR”) workload. An exemplary embodiment monitors one or more performance indicators comprising a motion to photon latency associated with the immersive multimedia workload. Performance parameters associated with thermally aggressive processing components are adjusted to reduce demand for power while ensuring that the motion to photon latency is and/or remains optimized. Performance parameters that may be adjusted include, but are not limited to including, eye buffer resolution, eye buffer MSAA, timewarp CAC, eye buffer FPS, display FPS, timewarp output resolution, textures LOD, 6DOF camera FPS, and fovea size.
Abstract:
An apparatus is configured to render graphics content to reduce latency of the graphics content. The apparatus includes a display configured to present graphics content including a first portion corresponding to an area of interest and further including a second portion. The apparatus further includes a fovea estimation engine configured to generate an indication of the area of interest based on scene information related to the graphics content. The apparatus further includes a rendering engine responsive to the fovea estimation engine. The rendering engine is configured to perform a comparison of a first result of an evaluation metric on part of the area of interest with a second result of the evaluation metric with another part of the area of interest. The rendering engine is further configured to render the graphics content using predictive adjustment to reduce latency based on the comparison.
Abstract:
The present disclosure provides for systems, methods, and apparatus for image processing. These systems, methods, and apparatus may compare a current frame to at least one previous frame to determine an amount of difference. The amount of difference between the current frame and the at least one previous frame may be compared to a threshold value. Additionally, the frame rate may be adjusted based on the comparison of the amount of difference between the current frame and the at least one previous frame and the threshold value. Another example may determine an amount of perceivable difference between a current frame and at least one previous frame and adjust a frame rate based on the determined amount of perceivable difference between the current frame and the at least one previous frame.
Abstract:
Systems, methods, and computer programs are disclosed for minimizing power consumption in graphics frame processing. One such method comprises: initiating graphics frame processing to be cooperatively performed by a central processing unit (CPU) and a graphics processing unit (GPU); receiving CPU activity data and GPU activity data; determining a set of available dynamic clock and voltage/frequency scaling (DCVS) levels for the GPU and the CPU; and selecting from the set of available DCVS levels an optimal combination of a GPU DCVS level and a CPU DCVS level, based on the CPU and GPU activity data, which minimizes a combined power consumption of the CPU and the GPU during the graphics frame processing.
Abstract:
An apparatus is configured to render graphics content to reduce latency of the graphics content. The apparatus includes a display configured to present graphics content including a first portion corresponding to an area of interest and further including a second portion. The apparatus further includes a fovea estimation engine configured to generate an indication of the area of interest based on scene information related to the graphics content. The apparatus further includes a rendering engine responsive to the fovea estimation engine. The rendering engine is configured to perform a comparison of a first result of an evaluation metric on part of the area of interest with a second result of the evaluation metric with another part of the area of interest. The rendering engine is further configured to render the graphics content using predictive adjustment to reduce latency based on the comparison.
Abstract:
An apparatus is configured to render graphics content to reduce latency of the graphics content. The apparatus includes a display configured to present graphics content including a first portion corresponding to an area of interest and further including a second portion. The apparatus further includes a fovea estimation engine configured to generate an indication of the area of interest based on scene information related to the graphics content. The apparatus further includes a rendering engine responsive to the fovea estimation engine. The rendering engine is configured to perform a comparison of a first result of an evaluation metric on part of the area of interest with a second result of the evaluation metric with another part of the area of interest. The rendering engine is further configured to render the graphics content using predictive adjustment to reduce latency based on the comparison.