Abstract:
Disclosed are an apparatus and method for assessing decode reliability of voice, data and control channel transmissions. In an aspect, the apparatus and method are configured to receive one or more radio frames or parts of a frame on a downlink channel; demodulate the received one or more frames or parts of the frame; decode the demodulated one or more frames or parts of the frame; compute one or more demodulator-based metrics and one or more decoder-based metrics; combine the one or more demodulator-based metrics and the one or more decoder-based metrics using a reliability function that assesses reliability of the decoded one or more frames or parts of the frame; and accept or reject the decoded one or more frames or parts of the frame based on the assessment of the reliability of the decoded frames or parts of the frame.
Abstract:
The present disclosure presents a method and apparatus for reducing power consumption during a voice communication in a user equipment (UE). For example, the method may include receiving a plurality of frames associated with the voice communication. Further, such an example method may include determining whether a frame pattern based at least on the received plurality of frames corresponds to a transition from a speech burst period to a non-speech period, and disabling a portion of a receiver subsystem at the UE for at least a portion of a frame associated with the non-speech period. As such, the power consumption in a UE may be reduced.
Abstract:
Methods and apparatus for wireless communication for improving the call performance and power consumption during the connection state of a user equipment (UE). Aspects of the methods and apparatus relate to receiving a transmit power control (TPC) command from a network entity and decoding every TPC slot of the TPC command. Aspects of the methods and apparatus include ceasing the decoding of a TPC slot set when the current decoded symbol of the TPC slot is in disagreement with the previous decoded symbol of the TPC slot. The receiver of the UE is then deactivated until the end of the TPC slot set.
Abstract:
Disclosed are an apparatus and method for power control biasing towards early decode success of voice calls. In an aspect, the apparatus and method are configured to measure a signal-to-noise ratio (SNR) of a downlink transmission; request a base station to increase transmit power at the start of a transmission time interval (TTI) for a downlink voice call transmission; demodulate one or more voice frames of the voice call transmission; performing early decoding of one or more demodulated voice frames; determine whether the early decoding was successful; when the early decoding was successful, terminate demodulation and decoding of the voice call transmissions and request the base station to decrease transmit power; and when the early decoding was unsuccessful, request the base station to decrease transmit power for the remainder of the voice call transmission.
Abstract:
Disclosed are systems and methods for controlling by the User Equipment (UE) downlink power in early decode termination mode. In one aspect, the UE may be configured to perform early decoding of a downlink (DL) transmission from a base station. The UE further configured to estimate a signal-to-interference ratio (SIRE) of the DL transmission. Based on the SIRE, the UE is configured to select a Transmission Power Control (TPC) command sequence for a low power mode of operation of the UE in which a receiver is powered down. The UE is further configured to activate the low power mode and transmit the selected TPC command sequence to the base station to adjust a DL transmission power during the low power mode.
Abstract:
Disclosed are systems and methods for controlling by the User Equipment (UE) downlink power in early decode termination mode. In one aspect, the UE may be configured to perform early decoding of a downlink (DL) transmission from a base station. The UE further configured to estimate a signal-to-interference ratio (SIRE) of the DL transmission. Based on the SIRE, the UE is configured to select a Transmission Power Control (TPC) command sequence for a low power mode of operation of the UE in which a receiver is powered down. The UE is further configured to activate the low power mode and transmit the selected TPC command sequence to the base station to adjust a DL transmission power during the low power mode.
Abstract:
Disclosed are methods and apparatus for reducing UE's power consumption by controlling early decoding boundary. In one aspect, a UE is configured to receive a data or voice frame from a base station. The UE selects one or more quality metrics for determining decoding boundary of the received frame and computes the selected one or more quality metrics. The UE then determines a decoding boundary for the frame based on one or more computed quality metrics. The UE then decodes the received frames at the determined decoding boundary and determines whether the decoding of the frame was successful. If the early decoding of the frame was successful, the UE may terminate reception of the frame. If the early decoding of the frame was unsuccessful, the UE may adjust the decoding boundary and decodes the frame at the adjusted boundary.
Abstract:
One or more aspects of the present disclosure aim to enable a reduced call drop rate and/or improved call performance in calls using 3GPP Release 99 Dedicated Physical Channel (DPCH) signaling, while reducing, or at least not causing a substantially large rise in power consumption at a wireless device, by utilizing selection diversity at a receiver. According to an aspect of the disclosure, a UE invokes a measurement period for detecting a downlink dedicated control channel (DCCH) based on a condition of a radio channel, during an initial portion of a transmission time interval (TTI). The UE samples one or more characteristics of a radio channel utilizing one or more of a plurality of receive chains. If the DCCH is detected during the measurement period, the UE selects one or more receive chains from among the plurality of receive chains in accordance with the one or more sampled characteristics. The UE receives a downlink transmission utilizing the selected one or more receive chains.
Abstract:
Disclosed are methods and apparatus for reducing UE's power consumption by controlling early decoding boundary. In one aspect, a UE is configured to receive a data or voice frame from a base station. The UE selects one or more quality metrics for determining decoding boundary of the received frame and computes the selected one or more quality metrics. The UE then determines a decoding boundary for the frame based on one or more computed quality metrics. The UE then decodes the received frames at the determined decoding boundary and determines whether the decoding of the frame was successful. If the early decoding of the frame was successful, the UE may terminate reception of the frame. If the early decoding of the frame was unsuccessful, the UE may adjust the decoding boundary and decodes the frame at the adjusted boundary.
Abstract:
Disclosed are an apparatus and method for assessing decode reliability of voice, data and control channel transmissions. In an aspect, the apparatus and method are configured to receive one or more radio frames or parts of a frame on a downlink channel; demodulate the received one or more frames or parts of the frame; decode the demodulated one or more frames or parts of the frame; compute one or more demodulator-based metrics and one or more decoder-based metrics; combine the one or more demodulator-based metrics and the one or more decoder-based metrics using a reliability function that assesses reliability of the decoded one or more frames or parts of the frame; and accept or reject the decoded one or more frames or parts of the frame based on the assessment of the reliability of the decoded frames or parts of the frame.