Abstract:
A signal reception circuit according to an aspect of the present disclosure includes: an input terminal; an input reference terminal; an output terminal; an output reference terminal; a normally-on type transistor that includes a first terminal connected to the output terminal, a second terminal connected to the output reference terminal, and a control terminal; a first detector circuit that detects an input signal applied between the input terminal and the input reference terminal, to apply an output signal between the output terminal and the output reference terminal; and a second detector circuit that detects the input signal, to apply a negative voltage pulse to the control terminal of the transistor with the output reference terminal as a reference.
Abstract:
Provided is an encoder capable of suppressing a decrease in detection accuracy. The encoder includes a moving plate, a light irradiator that irradiates a code pattern with light, and a light receiver. The code pattern includes a light guider and a non-light guider. A code pattern array is an array in which an error correction code for correcting an error is inserted into a position information data string that can specify a position. The light receiver includes a position detecting light receiving element that reads a position array of a code pattern and a position correcting light receiving element that outputs information for correcting an error.
Abstract:
A radio-frequency signal reception circuit that detects an input signal includes an input reference terminal, a first input terminal into which a first input signal is input, a second input terminal into which a second input signal is input, an output terminal and output reference terminal from which an output signal is output, a first detector circuit that detects the first input signal and outputs a first output signal, which is a positive-voltage pulse signal, to the output terminal, a second detector circuit that detects the second input signal and outputs a second output signal, which is a positive-voltage pulse signal, to the output reference terminal, and a transistor connected to the input reference terminal and output reference terminal. The input signal includes the first input signal and second input signal. The output signal includes the first output signal and second output signal.
Abstract:
Provided is an encoder capable of achieving high position resolution without being finely divided, and capable of detecting a rotation angle or the like with high sensitivity. The encoder includes: rotary plate (2) having a plurality of reflection structures (10) repeatedly formed and code (20) including light reflector (21); irradiator (4) that irradiates the plurality of reflection structures (10) with light; and light receiver (5) that receives light reflected by the plurality of reflection structures (10). Each of the plurality of reflection structures (10) has a surface in a convex shape, and each of the plurality of reflection structures (10) has a width that is an integral multiple of a width of light reflector (21).
Abstract:
A resonance coupler according to one aspect of the present disclosure includes first resonance wiring and second resonance wiring. The first resonance wiring includes first open loop wiring, first input/output wiring extending outwardly from a first connection portion of the first open loop wiring, and first stub wiring extending inwardly from a second connection portion of the first open loop wiring. The second resonance wiring includes second open loop wiring, and second input/output wiring extending outwardly from a third connection portion of the second open loop wiring. The first stub wiring includes a first connection end connected to the second connection portion and a first open end on an opposite side. A wiring length from the first connection portion to the first open end is one-quarter of a wavelength of an nth-order harmonic of a radio-frequency signal, where n is an integer not less than 2.
Abstract:
An electromagnetic resonance coupler according to one aspect of the present disclosure includes a first layer, a second layer which faces a first principal surface of the first layer, a third layer which faces a second principal surface of the first layer, a first resonator which is located between the first layer and the second layer, and a second resonator which is located between the first layer and the third layer. A dielectric constant of the first layer is lower than either one of a dielectric constant of the second layer and a dielectric constant of the third layer. A dielectric dissipation factor of the first layer is higher than either one of a dielectric dissipation factor of the second layer and a dielectric dissipation factor of the third layer.
Abstract:
A gate drive circuit includes: a modulation circuit that generates a first modulated signal and a second modulated signal; an isolator including a first electromagnetic resonance coupler that isolatedly transmits the first modulated signal, and a second electromagnetic resonance coupler that isolatedly transmits the second modulated signal; a first rectifier circuit that generates a first signal by rectifying the first modulated signal; a second rectifier circuit that generates a second signal by rectifying at least a part of the second modulated signal; a third rectifier circuit that generates charging voltage by rectifying a second radio-frequency wave; a capacitor that charges a charge in accordance with the charging voltage; and an output circuit which selects whether or not to supply the charge charged in the capacitor to a gate terminal of the semiconductor switch, in accordance with at least one of the first signal and the second signal.
Abstract:
A gate drive circuit in an aspect of the present disclosure includes: a first electromagnetic resonant coupler that isolatedly transmits a transmission signal from the primary side to the secondary side, and also isolatedly transmits a reflected signal from the secondary side to the primary side; a modulator circuit that modulates a radio-frequency wave with an input signal to generate the transmission signal; a demodulator circuit that demodulates the transmission signal to generate an output signal; a variable capacitance diode into which the transmission signal is input from the first electromagnetic resonant coupler, the variable capacitance diode disposed on the secondary side, the variable capacitance diode allowing a capacitance thereof to vary according to a monitor signal; and a reflected signal rectifier circuit that rectifies the reflected signal input to generate a monitor output signal.
Abstract:
In a signal generating circuit, a power supply terminal is connected with first terminals of a first switching element, a second switching element, and a third switching element; second terminals of the second switching element and the third switching element are connected to each other at a first node; the first node is connected with a ground and a first input terminal; a conduction control terminal of the third switching element is connected with the power supply terminal and the first terminal of the first switching element; a second terminal of the first switching element is connected with the first node; the second input terminal is connected with conduction control terminals of the first switching element and the second switching element; a first output terminal is connected with a second node; a second output terminal is connected with a third node; a first high-frequency cutoff element is connected with the power supply terminal and the second node; and a second high-frequency cutoff element is connected with the power supply terminal and the third node.
Abstract:
A charging-voltage generating unit generates voltage which charges a charge storage element from one input signal. An output-voltage generating unit generates voltage referenced to a signal output reference terminal and output at a signal output terminal from another input signal. A charging-voltage output terminal and first terminals of a first switching element and the charge storage element are connected at a first point. A charging-voltage output reference terminal is connected with a second terminal of the first switching element at a second point. An output-voltage output terminal, a first terminal of a second switching element, and the signal output terminal are connected at a third point. The output-voltage output reference terminal, a signal output reference terminal, and second terminals of the second switching element and the charge storage element are connected at a fourth point. The second and third points are interconnected.