Abstract:
A radio-frequency signal reception circuit that detects an input signal includes an input reference terminal, a first input terminal into which a first input signal is input, a second input terminal into which a second input signal is input, an output terminal and output reference terminal from which an output signal is output, a first detector circuit that detects the first input signal and outputs a first output signal, which is a positive-voltage pulse signal, to the output terminal, a second detector circuit that detects the second input signal and outputs a second output signal, which is a positive-voltage pulse signal, to the output reference terminal, and a transistor connected to the input reference terminal and output reference terminal. The input signal includes the first input signal and second input signal. The output signal includes the first output signal and second output signal.
Abstract:
A resonance coupler according to one aspect of the present disclosure includes first resonance wiring and second resonance wiring. The first resonance wiring includes first open loop wiring, first input/output wiring extending outwardly from a first connection portion of the first open loop wiring, and first stub wiring extending inwardly from a second connection portion of the first open loop wiring. The second resonance wiring includes second open loop wiring, and second input/output wiring extending outwardly from a third connection portion of the second open loop wiring. The first stub wiring includes a first connection end connected to the second connection portion and a first open end on an opposite side. A wiring length from the first connection portion to the first open end is one-quarter of a wavelength of an nth-order harmonic of a radio-frequency signal, where n is an integer not less than 2.
Abstract:
A gate drive circuit includes: a modulation circuit that generates a first modulated signal and a second modulated signal; an isolator including a first electromagnetic resonance coupler that isolatedly transmits the first modulated signal, and a second electromagnetic resonance coupler that isolatedly transmits the second modulated signal; a first rectifier circuit that generates a first signal by rectifying the first modulated signal; a second rectifier circuit that generates a second signal by rectifying at least a part of the second modulated signal; a third rectifier circuit that generates charging voltage by rectifying a second radio-frequency wave; a capacitor that charges a charge in accordance with the charging voltage; and an output circuit which selects whether or not to supply the charge charged in the capacitor to a gate terminal of the semiconductor switch, in accordance with at least one of the first signal and the second signal.
Abstract:
A drive device that drives a semiconductor switching device includes a capacitor, an output selection unit that selects whether or not to supply a charge of the capacitor to a conduction control terminal of the semiconductor switching device, and a charge consumption unit that supplies the charge of the capacitor to a portion other than the conduction control terminal, thereby consuming the charge of the capacitor.
Abstract:
A gate drive circuit in an aspect of the present disclosure includes a modulated signal generation circuit that generates a first modulated signal, a first isolator that isolatedly transmits the first modulated signal, and a first rectifier circuit that generates a first output signal by rectifying the first modulated signal. The first modulated signal includes a first amplitude, a second amplitude larger than the first amplitude, and a third amplitude larger than the second amplitude. The first output signal includes a first output voltage value according to the first amplitude, a second output voltage value according to the second amplitude, and a third output voltage value according to the third amplitude.