Abstract:
Embodiments of a device and method are disclosed. In an embodiment, a CAN device includes a security module connected between a CAN bus interface of a CAN transceiver and a microcontroller communications interface of the CAN transceiver and an operational mode controller connected between the security module and the CAN bus interface. The security module is configured to perform a security function on data traffic received from the CAN bus interface or from the microcontroller communications interface. The operational mode controller is configured to set an operational mode for the CAN transceiver such that a CAN Flexible Data-rate (FD) frame or a corresponding CAN frame is output from the CAN bus interface. An identifier of the CAN FD frame is the same as an identifier of the corresponding CAN frame.
Abstract:
A latch circuit is based on a master-slave cross-coupled inverter pair configuration. The inverters of the slave circuit are coupled to a high voltage rail and a low voltage rail, wherein for each of the two inverters of the slave circuit inverter pair, the coupling to one of the voltage rails is through a resistive element. This circuit design avoids the need for an internal clock-buffer and enables single phase clocking, and therefore does not need internal clock signal inversion. The circuit can be implemented with low power, with no dynamic power consumption for redundant transitions when the input and the output data signal is same.
Abstract:
A device for proactively providing fault tolerance to a vehicle network is disclosed. The device includes a first interface to collect performance data from a plurality of network components of the vehicle network and a second interface to send reconfiguration instructions to the plurality of network components. The device may also include a database for storing the collected performance data, a processor to calculate a probability of failure of a network component in the plurality of network components based on the stored performance data.
Abstract:
Aspects of the present disclosure are directed to operating time-based circuitry. As may be implemented in connection with one or more embodiments, an apparatus and or method involved detecting timing characteristics of circuitry operating in respective clock domains, each having a semiconductor body region via which a clock signal path traverses. The respective semiconductor body regions are biased at respective bias levels that are based on the detected timing characteristics of the clock signal path that traverses the semiconductor body region being biased.
Abstract:
A latch circuit is based on a master-slave cross-coupled inverter pair configuration. The inverters of the slave circuit are coupled to a high voltage rail and a low voltage rail, wherein for each of the two inverters of the slave circuit inverter pair, the coupling to one of the voltage rails is through a resistive element. This circuit design avoids the need for an internal clock-buffer and enables single phase clocking, and therefore does not need internal clock signal inversion. The circuit can be implemented with low power, with no dynamic power consumption for redundant transitions when the input and the output data signal is same.
Abstract:
A sequential circuit arrangement and method are provided in which a latch input signal and a latched version of the input signal are compared to derive a difference signal. This difference signal can detect when changes in the input are not propagated to the output. A second logic gate arrangement derives an error signal from the product of difference signal and a delayed version of the difference signal. This means that normal operation of the circuit is not detected as an error—only when the latched output fails to follow the input after the normally expected delay is the error signal created. The latch element output or an inverted version of the latch element output is selected in dependence on the error signal.
Abstract:
Embodiments of a device and method are disclosed. In an embodiment, an IVN transceiver is disclosed. The IVN transceiver includes an IVN bus interface, a microcontroller communications interface, and a security module connected between the IVN bus interface and the microcontroller communications interface and configured to perform a security function.
Abstract:
An apparatus is disclosed that includes a clock distribution circuit configured to shift a first clock signal in the first voltage domain to a second voltage domain to produce the second clock signal. The second voltage domain extends outside of the first voltage domain. A set of flip-flops operating in the first voltage domain, each including a master latch, a slave latch, and a clock node is coupled to receive the second clock signal. Each flip-flop includes a master pass transistor configured to pass a value from an input of the flip-flop to an input of the master latch when the second clock node is set to a first value. Each flip-flop also includes a master pass transistor configured to pass the value from an output of the master latch to an input of the slave latch when the second clock node is set to a second value.
Abstract:
Embodiments of a device and method are disclosed. In an embodiment, a Controller Area Network (CAN) device includes a security module connected between a CAN bus interface of a CAN transceiver and a microcontroller communications interface of the CAN transceiver and a shield device connected between the CAN bus interface and the microcontroller communications interface. The security module is configured to perform a security function on data traffic received from the CAN bus interface or from a Serial Peripheral Interface (SPI) interface of the microcontroller communications interface. The shield device is configured to direct CAN Flexible Data-rate (FD) traffic received from the CAN bus interface to the security module.
Abstract:
Embodiments of a device and method are disclosed. In an embodiment, a CAN device includes a security module connected between a CAN bus interface of a CAN transceiver and a microcontroller communications interface of the CAN transceiver and an operational mode controller connected between the security module and the CAN bus interface. The security module is configured to perform a security function on data traffic received from the CAN bus interface or from the microcontroller communications interface. The operational mode controller is configured to set an operational mode for the CAN transceiver such that a CAN Flexible Data-rate (FD) frame or a corresponding CAN frame is output from the CAN bus interface. An identifier of the CAN FD frame is the same as an identifier of the corresponding CAN frame.
Abstract translation:公开了一种装置和方法的实施例。 在一个实施例中,CAN设备包括连接在CAN收发器的CAN总线接口和CAN收发器的微控制器通信接口之间的安全模块以及连接在安全模块和CAN总线接口之间的操作模式控制器。 安全模块被配置为对从CAN总线接口或从微控制器通信接口接收的数据业务执行安全功能。 操作模式控制器被配置为设置CAN收发器的操作模式,使CAN CAN数据速率(FD)帧或相应的CAN帧从CAN总线接口输出。 CAN FD帧的标识符与对应的CAN帧的标识符相同。