Abstract:
According to one embodiment, a sensor includes an element section. The element section includes a first beam, a first beam electrode, a second beam, and a second beam electrode. The first beam includes a first portion, a first other portion, and a first intermediate portion between the first portion and the first other portion. The first beam electrode is connected to the first intermediate portion. The second beam includes a second portion, a second other portion, and a second intermediate portion between the second portion and the second other portion. The second beam electrode is connected to the second intermediate portion. The first and the second beam electrodes satisfy at least one of first to eighth conditions.
Abstract:
According to one embodiment, a sensor includes a base body, a support member, and a movable member. The base body includes a first face including a first base region. The support member is fixed to the first base region. The support member includes a support portion and an extending portion. The extending portion is connected to the support portion. The extending portion extends along a second direction crossing a first direction from the first base region to the support portion. A first width of the support portion in a third direction crossing a plane including the first direction and the second direction is wider than a second width of the extending portion in the third direction. The movable member is supported by the extending portion. A first gap is provided between the first face and the movable member.
Abstract:
According to one embodiment, a sensor includes a sensor element, a housing provided around the sensor element, and a processor. The sensor element includes a base body including first and second base body regions, and first and second sensor parts. The first sensor part is provided in the first base body region, and includes a first sensor movable part. The second sensor part is provided in the second base body region and includes first and second beams. The processor can derive a rotation angle and an angular velocity based on a signal obtained from the first sensor movable part. The processor can detect acceleration and a temperature based on a first resonance frequency of the first beam and a second resonance frequency of the second beam. The processor can correct one of the rotation angle or the angular velocity based on one of the temperature or the acceleration.
Abstract:
According to one embodiment, a pressure sensor includes a base body, a supporter, a film part, a first electrode, and a second electrode. The supporter is fixed to the base body. The film part is separated from the base body. The film part includes first, second, and third partial regions, and a rim portion. The rim portion is supported by the supporter. The second partial region is between the first partial region and the rim portion. The third partial region is between the second partial region and the rim portion. The first electrode is provided between the base body and the first partial region and between the base body and the second partial region. The first electrode is fixed to the base body. The second electrode is provided between the first electrode and the first partial region and between the first electrode and the second partial region.
Abstract:
According to an embodiment, a pressure sensor includes a support part, a flexible membrane part, and a magnetoresistive element. The flexible membrane part is supported by the support part, and includes a first region and a second region with rigidity lower than rigidity of the first region. The magnetoresistive element is provided on the membrane part, and includes a first magnetic layer, a second magnetic layer, and a spacer layer provided between the first magnetic layer and the second magnetic layer.
Abstract:
According to one embodiment, a MEMS device is disclosed. The device includes a substrate, a first and second MEMS elements on the substrate. Each of the first and second MEMS elements includes a fixed electrode on the substrate, a movable electrode above the fixed electrode, a first insulating film, the first insulating film and the substrate defining a cavity in which the fixed and movable electrodes are contained, and a first anchor on a surface of the first insulating film inside the cavity and configured to connect the movable electrode to the first insulating film. The cavity of the first MEMS element is closed. The cavity of the second MEMS element is opened by a through hole.
Abstract:
According to one embodiment, a sensor includes a base, a first support portion fixed to the substrate, and a first member supported by the first support portion. A gap is provided between the base and the first member. The first beam electrode and the second beam electrode satisfy at least one of a first condition, a second condition, a third condition, a fourth condition, a fifth condition, a sixth condition, a seventh condition, or an eighth condition.
Abstract:
According to one embodiment, a sensor includes a first detection element, and a controller. The first detection element includes a base body, a first support portion, a first movable member, a first detection electrode, and a first counter detection electrode. The first support portion is fixed to the base body. The first movable member is supported by the first support portion. The first detection electrode and the first counter detection electrodes are fixed to the base body. The first movable member includes a first movable portion. The first movable portion includes a first beam, a first conductive extending portion, and a first connecting portion. The first conductive extending portion includes a first extending portion, a first extending other portion, and a first extending intermediate. The first extending portion is between the first detection electrode and the first counter detection electrodes. The controller includes a first differential circuit.
Abstract:
According to one embodiment, a sensor includes a base body including a first surface including first and second base body regions, a first structure body provided in the first base body region, a second structure body provided in the second base body region, and a control device. The first structure body includes a first movable member configured to vibrate. The vibration of the first movable member includes first and second components. The second structure body includes a second movable member configured to vibrate. The control device includes a controller configured to perform a processing operation. The processing operation includes outputting a second rotation angle, The second rotation angle is obtained by correcting a first rotation angle based on a resonance frequency of the second movable member. The first rotation angle of the first movable member is obtained based on the first component and the second component.
Abstract:
According to one embodiment, a sensor includes a supporter, a first film portion, a first sensing element, and a first magnetic portion. The first film portion is supported by the supporter, is deformable, and includes a first fixed end extending along a first fixed end direction. A first sensing element is fixed to the first film portion, and includes a first magnetic layer, a first opposing magnetic layer provided between the first magnetic layer and the first film portion, and a first intermediate layer provided between the first magnetic layer and the first opposing magnetic layer. A direction from the first opposing magnetic layer toward the first magnetic layer is aligned with a first element direction. The first magnetic portion includes a first end portion extending along a first end portion direction tilted with respect to the first fixed end direction, and overlaps a portion of the supporter.