Abstract:
An interference signal code power (ISCP) measurement is estimated in a time division multiple access/code division multiple access communication system. Signals transmitted in a particular time slot are received. A power level of the transmitted received signals of the particular time slot is measured. An association of ISCP values with measured power levels is provided. The measured power level is used to estimate an ISCP value. The estimated ISCP value is associated with that measured power level.
Abstract:
A drifting wireless transmit/receive unit (WTRU) has an associated drift radio network controller (D-RNC) and an associated servicing radio network controller (S-RNC). The D-RNC sends a request message to the S-RNC requesting measurements of the drifting WTRU. The S-RNC receives the request message and sends an information message with the requested measurements to the D-RNC. The D-RNC receives the information message.
Abstract:
A wireless communication system having a Node B and a plurality of wireless transmit/receive units (WTRUs), includes a contention-based uplink (UL) channel and at least one downlink (DL) physical channel. The UL channel supports UL transmissions from the WTRUs to the Node B. The UL channel is randomly accessed by a WTRU when the WTRU is ready to transmit data. The DL physical channel supports DL transmissions from the Node B to the WTRUs. The DL transmissions include an acquisition indicator and information regarding said acquisition indicator. The acquisition indicator confirms whether the data transmitted over said UL channel was successfully received by the Node B.
Abstract:
A method for determining uplink power requirements for a transceiver in a wireless communication system includes obtaining measurements from a beacon signal occupying a first timeslot in a frame; obtaining measurements from at least one additional channel having a known transmitted signal strength and occupying a second timeslot in the frame; and utilizing the measurements to determine a path loss estimate.
Abstract:
At a first user equipment (UE), an uplink signal is received of at least one second UE is received and time marked. At the first UE, a downlink signal from at least one base station is received and time marked. Observed time differences of arrival are determined using the time markings. A position of the first UE is determined based on the determined time differences of arrival.
Abstract:
A system and method for configuring the system for configuring a wireless multi-cell communication to provide multimedia broadcast services (MBMS) to a plurality of wireless transmit/receive units (WTRUs). The cells of the communication system are organized into a plurality of sets of one or more cells. Resource units are assigned to each set of cells in the communication system. The assigned resource units are allocated in each cell of the communication system for MBMS transmission. The WTRUs receive information indicating how to access the resource units allocated for MBMS transmission. The WTRUs receive the MBMS from one or more of the cells of the communication system.
Abstract:
A method for improving the reliability of a channel quality indicator (CQI) message in a wireless communications network begins with receipt of the CQI message. The CQI message is then decoded, and a decision metric value for each symbol in the CQI message is computed. A largest decision metric value and a second largest decision metric value for the CQI message are determined. The reliability of the CQI message can be determined by comparing the two largest decision metric values. This method may be applicable to high-speed downlink packet access in time division duplex, frequency division duplex, or other modes of transmission.
Abstract:
A system, components and methods provide controlled transmitter power in a wireless communication system in which both dedicated and shared channels are utilized. A network unit preferably has a receiver for receiving UL user data from WTRUs on UL DCHs and at least one UL SCH and a processor for computing target metrics for UL DCHs based on the reception of signals transmitted by a WTRU on an UL DCH associated with an UL SCH usable by the WTRU. A shared channel target metric generator is provided that is configured to output a respective UL SCH target metric derived from each computed UL DCH target metric. Each WTRU preferably has a processor which is configured to compute UL DCH power adjustments for an UL DCH associated with an UL SCH as a function of UL DCH target metrics computed by the network unit based on the reception of signals transmitted by the WTRU on the UL DCH and UL SCH power adjustments for the associated UL SCH as a function of the respective UL SCH target metrics output from the shared channel target metric generator. Preferably, the target metrics are target signal to interference ratios (SIRs).
Abstract:
A method for handover a mobile unit from a first base station to a second base station in a wireless communication systems employing smart antenna technology. Following trigger events of a handover, the mobile station generates a physical signal sounding pulse transmitted by an isotropic antenna. The sounding pulse may consist of a common sequence of symbols or a specific sequence of symbols that uniquely identifies the mobile station. A series of sounding pulses can be sent according to a power ramping procedure until a base station has focused a communications beam toward the mobile. Receiving base stations provide feedback information upon detection of the sounding pulse allowing the mobile unit and/or base station to form communication beams toward each other. A mapping protocol may also be utilized by the communication system.
Abstract:
In UTRA-TDD and other systems, a method and system for providing improved acquisition performance of beacon channels. The present invention uses time-staggered beacon time slots to provide improved beacon-acquisition performance. The present invention is applicable to sectorized cells or anywhere with unfavorable deployment conditions which lead to unacceptable beacon acquisition performance with time-aligned beacon time slots.