Abstract:
Methods, apparatuses, computer readable media for uplink transmission power control in a wireless network. An apparatus of a wireless device comprising processing circuitry is disclosed. The processing circuitry is configured to decode a trigger frame from an access point for an uplink communication, the trigger frame comprising an uplink resource allocation for the station, the uplink resource allocation including common information and per station information, the common information including an indication of a maximum receive power at the access point, the per station information comprising an identification of the station, and an indication of a resource unit (RU). The processing circuitry may be further configured to: encode an uplink (UL) physical layer convergence procedure (PLCP) protocol data unit (PPDU)(UL-PPDU) in accordance with the indication of the RU. The processing circuitry may be further configured to: determine a transmit power for the UL-PPDU based on the maximum receive power.
Abstract:
Embodiments of an access point (AP), station (STA) and method for subcarrier scaling are generally described herein. The AP may transmit a high efficiency (HE) physical layer convergence procedure (PLCP) protocol data unit (PPDU) that includes a legacy long training field (L-LTF), a legacy signal (L-SIG) field, and an HE signal (HE-SIG) field. The HE-SIG may be based on HE-SIG symbols mapped to a group of HE subcarriers that includes legacy subcarriers and HE extension subcarriers. The L-LTF may be based on L-LTF pilot symbols mapped to the legacy subcarriers. The L-SIG may be based on L-SIG legacy symbols mapped to the legacy subcarriers and L-SIG extension pilot symbols mapped to the HE extension subcarriers. The AP may scale a per-subcarrier power of the L-SIG extension pilot symbols to match a per-subcarrier power of the L-LTF pilot symbols.
Abstract:
A wireless device configured to process Multiple-Input Multiple-Output (MIMO) data streams. The wireless device includes a Singular Value Decompostion (SVD) engine configured to diagonalize a channel matrix into a precoding matrix; an SVD rotation engine configured to phase-rotate the precoding matrix, such that the channel matrix is partially de-diagnalized; and a transmitter configured to transmit a data packet corresponding to the phase-rotated precoding matrix.
Abstract:
This disclosure describes methods, apparatus, and systems related to early indication system. A device may identify a high efficiency frame in accordance with a high efficiency communication standard, received from a first device, the high efficiency frame including, at least in part, one or more legacy signal fields and one or more high efficiency signal fields. The device may determine a length field included in one of the one or more legacy signal fields, wherein the length field includes an indication bit. The device may determine a position of a high efficiency short training field within the high efficiency frame based at least in part on the indication bit.
Abstract:
Methods, apparatuses, computer readable media for uplink transmission power control in a wireless network. An apparatus of a wireless device comprising processing circuitry is disclosed. The processing circuitry is configured to decode a trigger frame from an access point for an uplink communication, the trigger frame comprising an uplink resource allocation for the station, the uplink resource allocation including common information and per station information, the common information including an indication of a maximum receive power at the access point, the per station information comprising an identification of the station, and an indication of a resource unit (RU). The processing circuitry may be further configured to: encode an uplink (UL) physical layer convergence procedure (PLCP) protocol data unit (PPDU)(UL-PPDU) in accordance with the indication of the RU. The processing circuitry may be further configured to: determine a transmit power for the UL-PPDU based on the maximum receive power.
Abstract:
A spur cancelation system includes error circuitry, inverse spur circuitry, and injection circuitry. The error circuitry is configured to generate an error signal based at least on a first transceiver signal in a transceiver signal processing chain. The inverse spur circuitry is configured to, based at least on the error signal, determine a gain and a phase of a spur signal in the transceiver signal and generate an inverse spur signal based at least on the gain and the phase of the spur signal. The injection circuitry is configured to inject the inverse spur signal to cancel a spur in a second transceiver signal in the transceiver signal processing chain.
Abstract:
Embodiments of an access point (AP), station (STA) and method for subcarrier scaling are generally described herein. The AP may transmit a high efficiency (HE) physical layer convergence procedure (PLCP) protocol data unit (PPDU) that includes a legacy long training field (L-LTF), a legacy signal (L-SIG) field, and an HE signal (HE-SIG) field. The HE-SIG may be based on HE-SIG symbols mapped to a group of HE subcarriers that includes legacy subcarriers and HE extension subcarriers. The L-LTF may be based on L-LTF pilot symbols mapped to the legacy subcarriers. The L-SIG may be based on L-SIG legacy symbols mapped to the legacy subcarriers and L-SIG extension pilot symbols mapped to the HE extension subcarriers. The AP may scale a per-subcarrier power of the L-SIG extension pilot symbols to match a per-subcarrier power of the L-LTF pilot symbols.
Abstract:
Embodiments of an access point (AP), station (STA) and method for subcarrier scaling are generally described herein. The AP may transmit a high efficiency (HE) physical layer convergence procedure (PLCP) protocol data unit (PPDU) that includes a legacy long training field (L-LTF), a legacy signal (L-SIG) field, and an HE signal (HE-SIG) field. The HE-SIG may be based on HE-SIG symbols mapped to a group of HE subcarriers that includes legacy subcarriers and HE extension subcarriers. The L-LTF may be based on L-LTF pilot symbols mapped to the legacy subcarriers. The L-SIG may be based on L-SIG legacy symbols mapped to the legacy subcarriers and L-SIG extension pilot symbols mapped to the HE extension subcarriers. The AP may scale a per-subcarrier power of the L-SIG extension pilot symbols to match a per-subcarrier power of the L-LTF pilot symbols.
Abstract:
An interfering signal from a co-running modem is filtered using a notch filter to cancel high frequency harmonic interference to a received radio frequency (RF) signal. Thereafter, a metric scaling and tone nulling are performed in the received RF signal to further eliminate residual harmonic frequencies.
Abstract:
Methods, apparatuses, and computer readable media for location measurement reporting in a wireless network are disclosed. An apparatus of a responder station is disclosed, the apparatus comprising processing circuitry configured to derive bits from a temporary key, and generate a first sequence and a second sequence using the bits, wherein the first sequence and second sequence comprise one or more symbols. The processing circuitry is further configured to concatenate the first sequence and the second sequence to form a new first sequence comprising the first sequence and the second sequence, and concatenate a modified first sequence and a modified second sequence to form a new second sequence. The processing circuitry may be configured to repeat a number of times the concatenate the first sequence through the concatenate the modified first sequence.