Abstract:
An apparatus for a mobile communication device adapted for digital pre-distortion that includes a memory and a processor operatively coupled to the memory of the processor. The processor receives a first input signal and also receives a first output signal from a power amplifier that is based on the first input signal. The processor additionally varies compression applied to a second input signal based on the first output signal of the power amplifier, generates a distortion compensation vector for the second input signal based on the first output signal of the power amplifier, and also varies an input excitation signal supplied to the power amplifier based on the first output signal of the power amplifier.
Abstract:
A communication device comprises a set of filters that are selectively coupled to different groups of front end ports and an antenna port to form a diplexer, a single filter or a no filter connection for transmission and reception of different data signals. A processor operates to selectively determine or combine filters and couple them to the front end ports and the antenna port based on an operational mode and a frequency separation of signals operating in different frequency ranges of different operating bands. The operational mode can alter between a carrier aggregation mode, in which more than one operating band is aggregated during transmission or reception, and a non-carrier aggregation mode, in which only one filter, no filters or the diplexer is bypassed. The insertion loss of the transmissions and receptions can also be actively decreased.
Abstract:
A circuit for generating a radio frequency signal is provided. The circuit includes an amplifier configured to generate a radio frequency signal based on a baseband signal. Further, the circuit includes a power supply configured to generate a variable supply voltage based on a control signal indicating a desired supply voltage, and to supply the variable supply voltage to the amplifier. The circuit further includes an envelope tracking circuit configured to generate the control signal based on a bandwidth of the baseband signal, and to supply the control signal to the power supply.
Abstract:
An apparatus for determining information on a power variation of a transmit signal comprises a power amplifier module, an antenna module and a power variation determining module. The power amplifier module amplifies a radio frequency transmit signal and the antenna module transmits at least partly the amplified radio frequency transmit signal. The power variation determining module determines a weighted sum of a first feedback signal derived from the amplified radio frequency transmit signal and a second feedback signal derived from the amplified radio frequency transmit signal. The first feedback signal and the second feedback signal comprise different dependencies on a varying impedance at the antenna module. Further, the power variation determining module generates a power variation signal based on the weighted sum. The power variation signal comprises information related to a power variation of the amplified radio frequency transmit signal.
Abstract:
An apparatus for amplifying a transmit signal comprises a transmit path comprising a power amplifier module to be coupled to an antenna module. The power amplifier module is configured to amplify a transmit signal. Further, the apparatus comprises an envelope tracking path comprising a variable delay module and a power supply module. The variable delay module is configured to vary a signal delay within the envelope tracking path according to a delay control parameter. Further, the apparatus comprises a delay control module configured to provide the delay control parameter based on a current characteristic transmit frequency of the transmit signal.
Abstract:
Techniques for closed loop power control in multi-transmission systems are discussed. One example system employing such techniques can include coupling circuitry configured to receive a transmission path signal comprising a plurality of signal components, wherein the plurality of signal components comprises at least a first signal component in a first frequency band and a second frequency component in a second frequency band distinct from the first frequency band; filter circuitry configured to receive the transmission path signal from the coupling circuitry, to separate the first signal component from the second signal component, and to separately output the first signal component and the second signal component; and power control circuitry configured to receive the first signal component and the second signal component, and to generate a first power control signal based on the first signal component and a second power control signal based on the second signal component.
Abstract:
An apparatus compensates nonlinearities in envelope tracking (ET) used in a mobile device by limiting a bandwidth of an envelope signal representing an envelope of an input baseband signal to be less than a bandwidth of tracker circuitry, generating a scaled replica of an output signal of the tracker circuitry based on the bandwidth-limited envelope signal, and generating a model distortion signal based on the scaled replica and the input baseband signal, where the model distortion signal emulates ET linearity degradation. The apparatus is further configured to generate an output baseband signal based on the scaled replica, the model distortion signal, and the input baseband signal, where the output baseband signal is pre-distorted relative to the input baseband signal according to the scaled replica, the model distortion signal, and the input baseband signal to compensate for degradations in transmit signal quality due to ET nonlinearities.
Abstract:
Compensation for one or more effects of impedance mismatch between a power amplifier (PA) and at least one filter is discussed. One example system that compensates for impedance mismatch with at least one filter comprises a PA, a measurement component, and a feedback component. The PA is configured to receive PA stimuli comprising a supply voltage and a radio frequency (RF) signal to be amplified, wherein a PA output is configured to be coupled to the at least one filter. The measurement component is coupled to the PA and configured to measure an output signal from the PA, wherein the output signal comprises a forward signal associated with the PA and a reflected signal associated with the at least one filter. The feedback component is configured to receive the output signal and to adjust one or more of the PA stimuli based at least in part on the output signal.
Abstract:
A data transmission system may comprise a first transmission chain comprising a first transmission power controller, the first transmission power controller being configured to operate in an open loop power control mode or in a closed loop power control mode; a second transmission chain; and a power control mode selector configured to select the first transmission power controller to operate in the open loop power control mode or in the closed loop power control mode based on at least one quantity indicative of interference induced by the second transmission chain in the first transmission power controller when operating in the closed loop power control mode.
Abstract:
An apparatus for determining information on a power variation of a transmit signal comprises a power amplifier module, an antenna module and a power variation determining module. The power amplifier module amplifies a radio frequency transmit signal and the antenna module transmits at least partly the amplified radio frequency transmit signal. The power variation determining module determines a weighted sum of a first feedback signal derived from the amplified radio frequency transmit signal and a second feedback signal derived from the amplified radio frequency transmit signal. The first feedback signal and the second feedback signal comprise different dependencies on a varying impedance at the antenna module. Further, the power variation determining module generates a power variation signal based on the weighted sum. The power variation signal comprises information related to a power variation of the amplified radio frequency transmit signal.