HIGH EFFICIENCY (HE) BEACON AND HE FORMATS

    公开(公告)号:US20210203439A1

    公开(公告)日:2021-07-01

    申请号:US17199861

    申请日:2021-03-12

    Abstract: Methods, apparatuses, and computer readable media for high efficiency (HE) beacon and HE formats in a wireless network are disclosed. An apparatus of a high efficiency (HE) access point (AP), where the apparatus comprises processing circuitry configured select a tuple from the basic HE-MCS set of tuples, if a basic HE modulation and control scheme (MCS)(HE-MCS) and a number of spatial streams (NSS) set of tuples is not empty, and otherwise select the tuple from a mandatory HE-MCS and NSS set of tuples. The processing circuitry may be further configured to encode a beacon frame in a HE single user (SU) physical layer (PHY) protocol data unit (PPDU), in accordance with the selected tuple, and configure the HE AP to transmit the HE SU PPDU. Null data packets formats, methods, computer readable media, and apparatuses are disclosed for multiple 20 MHz operations.

    Fast steering timing and resource allocation

    公开(公告)号:US11044685B2

    公开(公告)日:2021-06-22

    申请号:US16305769

    申请日:2017-06-21

    Abstract: Embodiments of fast steering timing and resource allocation are generally described herein. In some embodiments, a non-access point station (STA) decodes a fast steering timing signaling element (STSE) at a Narrow Band Control sub-Channel (NB-C-CH) and from an allocator device, the STSE indicating at least fast steering timing information, an identified Narrow Band Service sub-Channel (NB-S-CH), resource allocation information for the identified NB-S-CH, and connectivity information for the identified NB-S-CH, the identified NB-S-CH being selected from a plurality of NB-S-CHs. The STA exchanges packets in the NB-S-CH according to the resource allocation information and the connectivity information and based on the fast steering timing information. The STA encodes or decodes data associated with the exchanged packets.

    Secure sounding signals
    3.
    发明授权

    公开(公告)号:US11044351B2

    公开(公告)日:2021-06-22

    申请号:US16216417

    申请日:2018-12-11

    Abstract: Methods, apparatuses, and computer readable media for location measurement reporting in a wireless network are disclosed. An apparatus of a responder station is disclosed, the apparatus comprising processing circuitry configured to derive bits from a temporary key, and generate a first sequence and a second sequence using the bits, wherein the first sequence and second sequence comprise one or more symbols. The processing circuitry is further configured to concatenate the first sequence and the second sequence to form a new first sequence comprising the first sequence and the second sequence, and concatenate a modified first sequence and a modified second sequence to form a new second sequence. The processing circuitry may be configured to repeat a number of times the concatenate the first sequence through the concatenate the modified first sequence.

    MULTI-BAND LINK-AGGREGATION PRE-NEGOTIATED POWER SAVE MODES

    公开(公告)号:US20200351783A1

    公开(公告)日:2020-11-05

    申请号:US16792746

    申请日:2020-02-17

    Abstract: An apparatus for implementing power control for a radio device that has multiple radio transceivers operating in different bands, including sub-bands of a single frequency band. The device implements a power control protocol for communications between the device and a similar peer device. The device sets-up the power control protocol by generating a request to use one of the multiple bands to signal power control operations, and to use another one of the multiple bands to transfer data between the device and the peer device. The device sends the request to the peer device and receives a response. Based on the response, the device identifies a control channel band and a data channel band from among the multiple bands.

    Integration of wake-up radio with existing power save protocol

    公开(公告)号:US10687282B2

    公开(公告)日:2020-06-16

    申请号:US16222450

    申请日:2018-12-17

    Abstract: Embodiments of a low-power wake-up radio (LP-WUR) are generally described herein. In some embodiments, a wireless device is set to a first state or a second state, wherein in the first state the wireless device is configured to receive wake-up (WU) packets, and wherein in the second state the wireless device is configured to not receive WU packets, wherein the wireless device comprises a WLAN radio and a low-power wake-up radio (LP-WUR).In some embodiments, the wireless device is configured to receive a wake-up packet, turn on the WLAN radio and turn off the LP-WUR. In some embodiments, the wireless device is configured to turn off the WLAN radio and turn on the LP-WUR for power conservation. In some embodiments, the wireless device turns off the WLAN radio and turns off the LP-WUR, and can periodically turn on the LP-WUR radio for extreme power saving.

    Network allocation vector settings for multi-user operation

    公开(公告)号:US10609732B2

    公开(公告)日:2020-03-31

    申请号:US16224183

    申请日:2018-12-18

    Abstract: Methods, computer readable media, and wireless apparatuses are disclosed for setting network allocation vectors (NAV) for multi-user (MU) operation. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry configured to: decode a preamble portion of a frame, and if the preamble portion of the frame comprises a high-efficiency (HE) signal (SIG) A field (HE-SIG-A) comprising a transmission opportunity (TXOP) duration field and a media access control (MAC) portion of the frame is not decoded, set one or more NAVs based on the TXOP duration field. The processing circuitry may be further configured to: decode a MAC portion of the frame, and if the MAC portion of the frame comprises a MAC duration field, set the one or more NAVs based on the MAC duration field.

    Methods and systems for reuse of a wireless medium during wake-up of a wireless device

    公开(公告)号:US10462744B2

    公开(公告)日:2019-10-29

    申请号:US15719029

    申请日:2017-09-28

    Abstract: Methods, devices, and systems for retransmission of wake-up signals from a first station to a second station over a wireless network are disclosed. In some aspects, a wake-up signal is encoded for transmission to the second station. While the first station is waiting for an acknowledgment of the wake-up signal from the second station, the second station may retransmit the wake up signal and/or encode a packet for transmission to a third station. In some aspects, whether the wake-up signal is retransmitted is based in part, on at least one of whether a number of timeout events for wake-up signals transmitted to the second station exceeds a maximum timeouts threshold, whether a number of wake-up signals transmitted to the second station exceeds a maximum wake-up signals threshold; or whether a maximum predetermined elapsed time since a first wake-up signal was transmitted to the second station is exceeded.

Patent Agency Ranking