Abstract:
A glow discharge spectrometry system includes a glow discharge lamp suitable for receiving a solid sample (10) and forming a glow discharge etching plasma (19). The system (100) for measuring in situ the depth of the erosion crater generated by etching of the sample (10) includes an optical separator (3), optical elements (4) suitable for directing a first incident beam (21) toward a first zone (11) of the sample, the first zone being exposed to the etching plasma, and a second incident beam (22) toward a second zone (12) of the same side of the sample, the second zone being protected from the etching plasma, respectively, and an optical recombining device (3) suitable for forming an interferometric beam (30) so as to determine the depth (d) of the erosion crater.
Abstract:
A spectrometer (100) for analyzing the spectrum of an upstream light beam (1), includes an entrance slit (101) and collimating elements (110) suitable for generating, from the upstream light beam, a collimated light beam (10), characterized in that it also includes: a polarization-dependent diffraction grating (120) suitable for diffracting, at each wavelength (11, 12) of the spectrum of the upstream light beam, the collimated light beam into a first diffracted light beam (11, 12) and a second diffracted light beam (21, 22); optical recombining elements (130) including a planar optical reflecting surface (130) perpendicular to the grating and suitable for deviating at least the second diffracted light beam; and focussing elements (140) suitable for focussing, at each wavelength, the first diffracted light beam and the second diffracted light beam onto one and the same focussing area (141).
Abstract:
An accurate and robust wavefront-division polarimetric analysis method and device, allows the quasi-instantaneous measurement of the polarization states of a luminous object. The device can be used to produce a plurality of light beams, all polarized according to different polarization states, from a single upstream light beam. The polarized light beams, which do not overlap and which carry information items that are complementary in terms of polarization, are analyzed simultaneously by a plurality of detectors that measure the luminous intensity of each beam. Processing elements digitally process the luminous intensity values obtained in order to determine the polarization state of the upstream light beam. The operations performed by the processing elements prevent luminous intensity variations in the split light beams during the division of the wavefront of the upstream light beam. Therefore, the wavefront-division polarimetric analysis device is robust and its accuracy is not hindered by the experimental conditions.
Abstract:
A spectrometer (100) for analyzing the spectrum of an upstream light beam (1) includes an entrance slit (101) and angular dispersing elements (130). The angular dispersing elements include at least one polarization-dependent diffraction grating that is suitable for, at the plurality of wavelengths (1, 2, 3), diffracting a corrected light beam (20) into diffracted light beams (31, 32, 33) in a given particular diffraction order of the polarization-dependent diffraction grating, which is either the +1 diffraction order or the −1 diffraction order, when the corrected light beam has a preset corrected polarization state that is circular; and the spectrometer includes elements for modifying polarization (1100) placed between the entrance slit and the angular dispersion elements, which are suitable for modifying the polarization state of the upstream light beam in order to generate the corrected light beam with a preset corrected polarization state.
Abstract:
An accurate and robust wavefront-division polarimetric analysis method and device, allows the quasi-instantaneous measurement of the polarization states of a luminous object. The device can be used to produce a plurality of light beams, all polarized according to different polarization states, from a single upstream light beam. The polarized light beams, which do not overlap and which carry information items that are complementary in terms of polarization, are analyzed simultaneously by a plurality of detectors that measure the luminous intensity of each beam. Processing elements digitally process the luminous intensity values obtained in order to determine the polarization state of the upstream light beam. The operations performed by the processing elements prevent luminous intensity variations in the split light beams during the division of the wavefront of the upstream light beam. Therefore, the wavefront-division polarimetric analysis device is robust and its accuracy is not hindered by the experimental conditions.