Abstract:
A cast nickel-base superalloy that includes iron added substitutionally for nickel. The cast nickel base superalloy comprises, in weight percent about 1-6% iron, about 7.5-19.1% cobalt, about 7-22.5% chromium, about 1.2-6.2% aluminum, optionally up to about 5% titanium, optionally up to about 6.5% tantalum, optionally up to about 1% Nb, about 2-6% W, optionally up to about 3% Re, optionally up to about 4% Mo, about 0.05-0.18% C, optionally up to about 0.15% Hf, about 0.004-0.015 B, optionally up to about 0.1% Zr, and the balance Ni and incidental impurities. The superalloy is characterized by a γ′ solvus temperature that is within 5% of the γ′ solvus temperature of the superalloy that does not include 1-6% Fe and a mole fraction of γ′ that is within 15% of the mole fraction of the superalloy that does not include 1-6% Fe.
Abstract:
Modified turbine components include an original turbine component comprising an outer wail enclosing an internal cavity, wherein the outer wall has an original portion removed therefrom to expose the internal cavity, and, an internally cooled supplemental element joined to the outer wall that replaces the original portion removed from the outer wall and re-encloses the internal cavity. The internally cooled supplemental element comprises one or more cooling channels that circulate air from the internal cavity through at least a portion of the internally cooled supplemental element.
Abstract:
A casting method, cast article and casting system are disclosed. The casting method includes providing a base material in a mold, directing a fluid material into the mold, and solidifying the base material and the fluid material to form a cast article. The base material has a first density and first composition. The fluid material has a second density and a second composition. The first density differs from the second density, the first composition differs from the second composition, or the first density differs from the second density and the first composition differs from the second composition. The cast article includes a first material solidification from the base material, and a second material solidification from the fluid material. The casting system includes a mold for containing a base material and an input configuration, with flow control feature, for directing a fluid material into the mold containing the base material.
Abstract:
A method of forming an article can comprise heating a metal to form a molten metal having a metal temperature; heating a mold to a mold temperature greater than or equal to the metal temperature; introducing the molten metal to the mold; cooling a first portion of the molten metal while maintaining a second portion of the molten metal at the metal temperature, wherein the first portion has a first side and a second side, wherein the second side is opposite the first side and adjacent to the second portion, and wherein the cooling comprises progressively cooling the first portion from the first side to the second side such that a solidification interface progresses from the first side to the second side; and cooling the remainder of the molten metal from multiple directions after the first portion is cooled to less than or equal to a crystallization temperature.
Abstract:
Molded articles and methods for forming molded articles are provided. For example, a molded article comprises a first region formed by a first casting material and a second region formed by mixing a molten or liquid portion of the first casting material and a second casting material. The first casting material is a molten, liquid, or fluid metal alloy, and the second casting material is a molten or fluid metal alloy. The first casting material has a different chemical composition than the second casting material. The first region and the second region are cast as one integral casting using directional solidification, and the first region and the second region have different microstructure patterns. The molded article has a lower concentration of impurities than were present in the first and second casting materials, and an interface between the first region and the second region is devoid of an oxidation layer.
Abstract:
A method comprising introducing a first casting material into a casting mold; applying directional solidification to the first casting material in the casting mold; introducing a second casting material into the casting mold, the second casting material having a different chemical composition than the first casting material; applying directional solidification to the second casting material in the casting mold; and forming a molded article, wherein the molded article comprises a first region
Abstract:
Modified turbine components include an original turbine component comprising an outer wail enclosing an internal cavity, wherein the outer wall has an original portion removed therefrom to expose the internal cavity, and, an internally cooled supplemental element joined to the outer wall that replaces the original portion removed from the outer wall and re-encloses the internal cavity. The internally cooled supplemental element comprises one or more cooling channels that circulate air from the internal cavity through at least a portion of the internally cooled supplemental element.
Abstract:
An article and a method for forming the article are disclosed. The article comprising a composition, wherein the composition comprises, by weight percent, about 13.7% to about 14.3% chromium (Cr), about 9.0% to about 10.0% cobalt (Co), about 3.5% to about 3.9% aluminum (Al), about 3.4% to about 3.8% titanium (Ti), about 4.0% to about 4.4% tungsten (W), about 1.4% to about 1.7% molybdenum (Mo), about 1.55% to about 1.75% niobium (Nb), about 0.08% to about 0.12% carbon (C), about 0.005% to about 0.040% zirconium (Zr), about 0.010% to about 0.014% boron (B), and balance nickel (Ni) and incidental impurities. The composition is substantially free of tantalum (Ta) and includes a microstructure substantially devoid of Eta phase.
Abstract:
A nickel alloy for direct metal laser melting is disclosed. The alloy comprising includes a powder that contains about 1.6 to about 2.8 weight percent aluminum, about 2.2 to about 2.4 weight percent titanium, about 1.25 to about 2.05 weight percent niobium, about 22.2 to about 22.8 weight percent chromium, about 8.5 to about 19.5 weight percent cobalt, about 1.8 to about 2.2 weight percent tungsten, about 0.001 to about 0.05 weight percent carbon, about 0.002 to about 0.015 weight percent boron, and about 40 to about 70 weight percent nickel. Related processes and articles are also disclosed.
Abstract:
An article comprising a substrate; a bond layer disposed on the substrate, the bond layer comprising one or more bonding segments and at least one reinforcing segment; at least one protective layer disposed on the bond layer; and at least one cooling hole extending through the substrate, the at least one reinforcing segment and the at least one protective layer, wherein the at least one reinforcing segment reduces cracking and/or delamination at the interface between the substrate and the bond layer, and methods of making the same.