Abstract:
A microlens array and a method for fabricating thereof are provided. The microlens array of the present invention comprises a lens structure part formed by bistable dielectric polymer thin film; first and second electrode parts each formed on the upper surface and the bottom surface of the lens structure part to apply voltage for shape changes of the lens structure part; a circuit part applying heat to the dielectric polymer thin film to change the property of the dielectric polymer thin film to be soft; and a base part formed on the bottom surface of the second electrode in predetermined intervals. The method further comprises a hydraulic part to apply predetermined voltage to the bottom surface of the lens structure part. The microlens array is thus able to change optical properties by deform the shape of a transparent dielectric polymer thin film having bistablity to various sizes of lens shapes by the purposes.
Abstract:
Disclosed herein are an apparatus and method for providing a haptic effect using a sound effect. The apparatus includes an audio filter storage unit, an acquisition unit, an analysis unit, a message configuration unit, and a haptic output unit. The audio filter storage unit stores a plurality of adaptive audio filters. The acquisition unit obtains sound effects output by an electronic device in response to an application or a user input event. The analysis unit analyzes the frequency components of each of the sound effects. The message configuration unit detects at least one of the adaptive audio filters from the audio filter storage unit, and generates a haptic output message, corresponding to the sound effect. The haptic output unit outputs a haptic effect based on the haptic output message. The adaptive audio filter dynamically varies depending on the application or the user input event.
Abstract:
An autostereoscopic 3D image display apparatus is disclosed. The autostereoscopic 3D image display apparatus in accordance with an embodiment of the present invention can include: an image display unit configured to display an image; a micro lens array arranged above the image display unit and configured to vary a focus of an image from the image display unit; and an electrode coated on the micro lens array and configured to have an electric signal supplied thereto to cause transformation of the micro lens array.
Abstract:
Disclosed herein is a shape-variable optical element including: a shape-variable lens; a first electrode unit configured to be connected to the shape-variable lens; a second electrode unit configured to face the first electrode unit; and a deformation part configured to be disposed between the first electrode unit and the second electrode unit.
Abstract:
Provided is a variable-shape optical element including a variable-shape lens, an actuator connected to the variable-shape lens, and a support configured to support the actuator. Here, the actuator may vary in shape according to an electrical signal.
Abstract:
An auto focusing lens includes an active lens including a lens body including electroactive polymer and a transparent electrode at least partially coated on a surface of the lens body, and a controller controlling the focus of the active lens by applying a voltage to the transparent electrode.
Abstract:
There are provided an image processing apparatus and a control method thereof. An image processing apparatus includes an image sensor for acquiring a target image, an image processing module for performing focusing on a specific area of the acquired target image and determining a focal surface of the target image on the basis of the performed focusing, and a drive control module for controlling the curvature of the image sensor, based on the determined focal surface.
Abstract:
An active diffuser for reducing a speckle in accordance with an embodiment of the present invention includes: an electroactive polymer film having at least one or more scattering patterns; a first transparent electrode coated on one surface of the electroactive polymer film; and a second transparent electrode coated on the other surface of the electroactive polymer film, and a shape of the scattering pattern of the electroactive polymer film is varied by voltage applied through the first transparent electrode and the second transparent electrode.
Abstract:
A reflective active variable lens includes an upper electrode, a lower electrode disposed in parallel to the upper electrode, a deformation part disposed between the upper electrode and the lower electrode, a reflective part disposed on the upper electrode, and a support part disposed to surround the deformation part. Here, the deformation part and the support part are connected to each other to provide a single structure, the deformation part is expanded from an initial shape when an electric field is formed between the upper electrode and the lower electrode, and the expanded deformation part is contracted when the electric field is removed and restored to the initial shape.
Abstract:
Provided are an electronic pen for inputting/outputting sensory information and a method for recognizing taste information and transforming the taste information into smell information using the same. The electronic pen includes: a sensory information input unit for receiving sensory information of the object; a signal processing unit for processing and storing sensory information transmitted from the sensory information input unit; a sensory information reproducing unit for outputting the sensory information; and a wireless communication unit for transmitting the sensory information.