Abstract:
Provided is a waveguide photodetector including a semiconductor substrate, a first optical waveguide and a second optical waveguide, which are sequentially laminated on the semiconductor substrate, in which each of the first optical waveguide and the second optical waveguide includes a first portion and a second portion, and the first portion extends from the second portion in a first direction parallel to a top surface of the semiconductor substrate, a refractive index matching layer disposed on the second portion of the second optical waveguide, a clad layer disposed on the refractive index matching layer, and an absorber disposed between the refractive index matching layer and the clad layer. Here, the second optical waveguide has a first conductive-type, the clad layer has a second conductive-type opposite to the first conductive-type, and the refractive index matching layer includes a first semiconductor layer that is an intrinsic semiconductor layer.
Abstract:
Provided are a display device, a method of fabricating the display device, and a method of fabricating an image sensor device. The method of fabricating the display device includes preparing a substrate including a cell array area and a peripheral circuit area, forming a silicon layer on the peripheral circuit area of the substrate, forming oxide layers on the cell array area and the peripheral circuit area of the substrate, forming gate dielectric layers on the silicon layer and the oxide layers, forming the gate electrodes on the gate dielectric layers, wherein the gate electrodes expose both ends of the silicon layer and both ends of the oxide layers, and injecting dopant into both ends of the silicon layer and both ends of the oxide layers at the same time.
Abstract:
Provided are a resonance tunneling device and a method of manufacturing the resonance tunneling device. The resonance tunneling device includes a substrate, a plurality of electrodes disposed on the substrate, and a nanoparticle layer disposed between the electrodes, and doped with an impurity. The nanoparticle layer uses the impurity to exhibit resonance tunneling where a current peak occurs at a target bias voltage applied between the electrodes.