Abstract:
The present disclosure relates to a sheet resistance measuring method, comprising the following steps: connecting at least one to-be-measured thin film having a predetermined shape to two separate electrodes in at least one pair of electrodes; measuring the resistance between the two electrodes in each pair of electrodes; and determining the sheet resistance of the to-be-measured thin film based on the measured resistance and the shape of the corresponding to-be-measured thin film.
Abstract:
The invention provides a method for fabricating a CMOS transistor and a method for fabricating an array substrate. The method for fabricating a CMOS transistor comprises a step of forming channels, which comprises: depositing an amorphous silicon layer on a substrate, and crystallizing the amorphous silicon layer into a poly-silicon layer; implanting boron atoms into the poly-silicon layer and then forming an N channel region and a P channel region by etching the poly-silicon layer implanted with the boron atoms; forming a photoresist-partially-retained region corresponding to the N channel region and a photoresist-completely-retained region corresponding to the P channel region through a single patterning process; and removing the photoresist in the photoresist-partially-retained-region and retaining a part of the photoresist in the photoresist-completely-retained region using an ashing process, implanting phosphorus atoms through ion implantation thereby forming an N channel and a P channel.
Abstract:
The present invention provides a thin film transistor and a method of fabricating the thin film transistor, an array substrate and a method of fabricating the array substrate, and a display device. The thin film transistor includes a substrate and a gate, an insulation layer, an active layer, a source and a drain which are provided on the substrate. A spacer layer is also provided between the gate and the active layer, and the spacer layer overlaps at least with one of the gate and the active layer having a smaller area in an orthographic projection direction. The spacer layer can effectively prevent material forming the gate from being diffused into the active layer, thereby ensuring stability of performance of the thin film transistor. In the array substrate utilizing the thin film transistor, the spacer layer further extends to a region corresponding to a gate line.
Abstract:
The present disclosure relates to a sheet resistance measuring method, comprising the following steps: connecting at least one to-be-measured thin film having a predetermined shape to two separate electrodes in at least one pair of electrodes; measuring the resistance between the two electrodes in each pair of electrodes; and determining the sheet resistance of the to-be-measured thin film based on the measured resistance and the shape of the corresponding to-be-measured thin film.
Abstract:
Provided is a manufacturing method for an array substrate, which relates to the technical field of displaying and comprises the steps of: S1: forming a pattern which comprises a first gate electrode (2) on a substrate (1); S2: forming a second gate electrode (4) above the first gate electrode (2) on the substrate (1) after step S1, and conducting oxidation treatment on the surface of the second gate electrode (4) to form a gate-insulating layer, the first gate electrode (2) and the second gate electrode (4) forming a gate electrode together; and S3: forming a layer-level structure of a pattern which comprises an active layer, source and drain electrodes, a data line, a passivation layer and a pixel electrode on the substrate after step S2. Also provided are an array substrate and a display device.
Abstract:
The invention provides a method for patterning a graphene layer and a method for manufacturing a display substrate. The method for patterning a graphene layer comprises: forming an isolation layer on a graphene layer; forming a photoresist layer on the isolation layer; patterning the photoresist layer; etching the isolation layer according to the patterned photoresist layer to form a patterned isolation layer; etching the graphene layer according to the patterned photoresist layer to form a patterned graphene layer; and removing the patterned isolation layer. In the method of the invention, the unfavorable condition of the prior art may be avoided that a graphene film sloughs off or a photoresist remains on a graphene film when a photoresist material is peeled off, and the product yield can be improved in the case that the production cost is controlled.
Abstract:
Provided is a manufacturing method for an array substrate, which relates to the technical field of displaying and comprises the steps of: S1: forming a pattern which comprises a first gate electrode (2) on a substrate (1); S2: forming a second gate electrode (4) above the first gate electrode (2) on the substrate (1) after step S1, and conducting oxidation treatment on the surface of the second gate electrode (4) to form a gate-insulating layer, the first gate electrode (2) and the second gate electrode (4) forming a gate electrode together; and S3: forming a layer-level structure of a pattern which comprises an active layer, source and drain electrodes, a data line, a passivation layer and a pixel electrode on the substrate after step S2. Also provided are an array substrate and a display device.