Abstract:
Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. The random diffusion of acid generated by a photoacid generator during a lithography process contributes to line edge/width roughness. Methods disclosed herein apply an electric field, a magnetic field, and/or a standing wave during photolithography processes. The field and/or standing wave application controls the diffusion of the acids generated by the photoacid generator along the line and spacing direction, preventing the line edge/width roughness that results from random diffusion. Apparatuses for carrying out the aforementioned methods are also disclosed herein.
Abstract:
A method of processing a substrate is disclosed herein. The method includes applying a photoresist layer comprising a photoacid generator to a substrate, wherein a first portion of the photoresist layer has been exposed unprotected by a photomask to a radiation light in a lithographic exposure process. The method also includes applying an electric field to alter movement of photoacid generated from the photoacid generator substantially in a vertical direction, wherein the electric field is applied by a first alternating pair of a positive voltage electrode and a negative voltage electrode and a second alternating pair of a positive voltage electrode and a negative voltage electrode.
Abstract:
Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. In one example, a method of processing a substrate, the method includes applying a photoresist layer comprising a photoacid generator to a substrate, exposing a first portion of the photoresist layer unprotected by a photomask to a radiation light in a lithographic exposure process, and applying an electric field or a magnetic field to alter movement of photoacid generated from the photoacid generator substantially in a vertical direction.
Abstract:
The embodiments herein provides methods for forming a PVD silicon oxide or silicon rich oxide, or PVD SiN or silicon rich SiN, or SiC or silicon rich SiC, or combination of the preceding including a variation which includes controlled doping of hydrogen into the compounds heretofore referred to as SiOxNyCz:Hw, where w, x, y, and z can vary in concentration from 0% to 100%, is produced as a hardmask with optical properties that are substantially matched to the photo-resists at the exposure wavelength. Thus making the hardmask optically planarized with respect to the photo-resist. This allows for multiple sequences of litho and etches in the hardmask while the photo-resist maintains essentially no optical topography or reflectivity variations.
Abstract translation:本文的实施方案提供了用于形成PVD氧化硅或富硅氧化物或PVD SiN或富硅SiN或富SiC或富硅SiC的方法或前述组合,包括将氢控制掺入到迄今为止参考的化合物 作为SiO x N y C z:H w,其中w,x,y和z可以在0%至100%的浓度范围内变化,作为具有与曝光波长下的光致抗蚀剂基本匹配的光学性质的硬掩模。 因此使相对于光致抗蚀剂光学平坦化的硬掩模。 这允许在硬掩模中的多个序列的光刻和蚀刻,而光致抗蚀剂基本上保持没有光学形貌或反射率变化。
Abstract:
Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. The random diffusion of acid generated by a photoacid generator during a lithography process contributes to line edge/width roughness. Methods disclosed herein apply an electric field, a magnetic field, and/or a standing wave during photolithography processes. The field and/or standing wave application controls the diffusion of the acids generated by the photoacid generator along the line and spacing direction, preventing the line edge/width roughness that results from random diffusion. Apparatuses for carrying out the aforementioned methods are also disclosed herein.
Abstract:
Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. The random diffusion of acid generated by a photoacid generator during a lithography process contributes to line edge/width roughness. Methods disclosed herein apply an electric field and/or a magnetic field during photolithography processes. The field application controls the diffusion of the acids generated by the photoacid generator along the line and spacing direction, preventing the line edge/width roughness that results from random diffusion. Apparatuses for carrying out the aforementioned methods are also disclosed herein.
Abstract:
Methods disclosed herein apply an electric field and/or a magnetic field during photolithography processes. The field application may control the diffusion of the charged species generated by the photoacid generator along the line and spacing direction, preventing the line edge/width roughness that results from random diffusion. The field application may additionally or alternatively control the diffusion of the charged species in a direction perpendicular to a plane formed by the photoresist layer. Such controlled perpendicular diffusion may increase the photoresist sensitivity. In other embodiments, the field may control the diffusion of the charged species within the plane of the photoresist layer but in a direction perpendicular or non-parallel to the line and spacing direction. Apparatuses for carrying out the aforementioned methods are also disclosed herein.
Abstract:
The embodiments herein provides methods for forming a PVD silicon oxide or silicon rich oxide, or PVD SiN or silicon rich SiN, or SiC or silicon rich SiC, or combination of the preceding including a variation which includes controlled doping of hydrogen into the compounds heretofore referred to as SiOxNyCz:Hw, where w, x, y, and z can vary in concentration from 0% to 100%, is produced as a hardmask with optical properties that are substantially matched to the photo-resists at the exposure wavelength. Thus making the hardmask optically planarized with respect to the photo-resist. This allows for multiple sequences of litho and etches in the hardmask while the photo-resist maintains essentially no optical topography or reflectivity variations.
Abstract translation:本文的实施方案提供了用于形成PVD氧化硅或富硅氧化物或PVD SiN或富硅SiN或富SiC或富硅SiC的方法或前述组合,包括将氢控制掺入到迄今为止参考的化合物 作为SiO x N y C z:H w,其中w,x,y和z可以在0%至100%的浓度范围内变化,作为具有与曝光波长下的光致抗蚀剂基本匹配的光学性质的硬掩模。 因此使相对于光致抗蚀剂光学平坦化的硬掩模。 这允许在硬掩模中的多个序列的光刻和蚀刻,而光致抗蚀剂基本上保持没有光学形貌或反射率变化。